奥鹏易百

 找回密码
 立即注册

扫一扫,访问微社区

QQ登录

只需一步,快速开始

查看: 244|回复: 0

利用野生甘蓝改良油菜Ogu CMS恢复材料的菌核病抗性

[复制链接]

2万

主题

27

回帖

6万

积分

管理员

积分
60146
发表于 2021-10-18 15:33:41 | 显示全部楼层 |阅读模式
扫码加微信
利用野生甘蓝改良油菜Ogu CMS恢复材料的菌核病抗性
万华方,丁一娟,陈致富,梅家琴,钱伟

(西南大学农学与生物科技学院/西南大学农业科学研究院,重庆 400716)

摘要:【目的】油菜生产受菌核病危害严重,但油菜中缺乏抗源,严重限制了油菜抗菌核病育种进程。萝卜胞质不育系(Ogu cytoplasmic male sterility,Ogu CMS)是生产油菜杂交种最好利用的授粉控制系统之一,但目前还没有抗菌核病油菜Ogu CMS恢复系选育的报道。野生甘蓝中存在高抗菌核病的资源,以抗病野生甘蓝为抗源,拟将野生甘蓝的菌核病抗病遗传成分转入Ogu CMS材料中,发展优质抗菌核病的油菜Ogu CMS恢复材料,为进一步发展抗菌核病的油菜Ogu CMS恢复系提供资源。【方法】首先采用抗菌核病野生甘蓝Brassica incana与白菜种间杂交,经胚挽救及染色体加倍技术发展人工合成甘蓝型油菜;然后将人工合成甘蓝型油菜与含 Ogu CMS的油菜杂交,后代自交,并利用与甘蓝抗病QTL连锁的marker进行分子标记辅助选择(marker-assisted selection,MAS),筛选携带主效抗病位点C1-QTL和C9-QTL的材料;MAS选中的材料通过侧枝离体接种鉴定评价其菌核病抗性,选择相对感病度S(susceptibility)显著低于甘蓝型油菜中双9号(耐病对照)的材料进行籽粒硫苷和芥酸含量测定,选择籽粒品质相对较好的材料进行恢保测定,筛选含抗病位点、抗菌核病、且结实率较好的Ogu CMS恢复材料。【结果】成功获得抗病甘蓝与白菜杂交发展的人工合成甘蓝型油菜AC1-4,其菌核病抗性显著高于甘蓝型油菜中双9号;AC1-4与Ogu CMS甘蓝型油菜4Q292杂交产生了146个F1单株,从中选择到含有甘蓝C1-QTL和C9-QTL、结实正常、相对感病度S分别为0.66和0.40的2个单株4C99和4C115发展F2世代;并从124个F2植株中筛选出8份材料自交发展了982个F2:3单株,并从中筛选到50株含有抗病位点C1-QTL和C9-QTL的植株,其相对感病度S介于0.34—0.89;其中有2份籽粒品质接近单低的材料5X82-2(硫苷含量为 45.38 μmol·g-1饼粕)和 5X82-7(芥酸含量为 6.5%)。【结论】改良了油菜 Ogu CMS恢复材料的菌核病抗性。

关键词:甘蓝型油菜;菌核病抗性;萝卜胞质不育;恢复系

0 引言
【研究意义】甘蓝型油菜(Brassica napus L.,AACC,2n=38)是由白菜(Brassica rapa L., AA,2n=20)和甘蓝(Brassica oleracea L.,CC,2n=18)杂交,并经自然加倍演化而来,是世界上重要的粮油作物和能源作物。中国是世界第二大油菜种植国,其长江流域油菜产业常年受到腐生真菌核盘菌(Sclerotinia sclerotiorum (Lib.) de Bary)的严重危害。由于现有油菜中缺乏菌核病的有效抗源,抗病甘蓝的发现为油菜抗病育种带来了新的思路。细胞质雄性不育(cytoplasmic male sterility,CMS),尤其是萝卜胞质不育系Ogu CMS的不育性十分稳定,是芸薹属作物的安全授粉控制系统[1],也是生产油菜杂交种最好利用的授粉控制系统之一。因此,以含有野生甘蓝优良抗病遗传成分的人工合成甘蓝型油菜为桥梁,培育抗菌核病的油菜Ogu CMS恢复系具有重要理论意义和实践意义。【前人研究进展】由于油菜基因库中匮乏高抗或免疫的资源[2-5],学者们已尝试从油菜的近缘物种中去发掘优良抗源[5-7]。作为油菜的亲本物种之一,甘蓝遗传多样性丰富[8-10],并且由于其长期受到野生环境的自然选择,存在优良的抗病资源。野生甘蓝B.incana具有良好的菌核病抗性,其茎秆抗病性可达到耐病油菜对照中油821的20倍[7],其抗病QTL(quantitative trait locus)分布在C1、C3、C4、C7和C9等多条连锁群[11],与现已报道的油菜抗菌核病QTL位置不同[12-14],其中,部分与甘蓝抗病QTL连锁的标记已成功应用于抗菌核病分子标记辅助选择[15-16]。为将此野生甘蓝的菌核病抗病位点导入油菜,DING等[17]以其为抗源,与白菜进行远缘杂交,发展了人工合成甘蓝型油菜,表现出较好的菌核病抗性。【本研究切入点】油菜中已成功育成了甘蓝型油菜Ogu胞质不育系[18-19]及Ogu CMS的恢复系[20-22],但受限于油菜抗源的匮乏,目前还没有抗菌核病的油菜 Ogu CMS恢复系报道。【拟解决的关键问题】本研究以人工合成甘蓝型油菜桥梁,将野生甘蓝的抗菌核病位点转入油菜,发展具有甘蓝抗病遗传成分且含恢复基因的材料,为发展抗菌核病油菜Ogu CMS恢复系提供种质资源。

1 材料与方法
1.1 试验时间和地点
田间试验于 2013—2016年在重庆市油菜工程技术研究中心试验基地和内蒙古大学试验基地(夏季加代繁殖)进行。

1.2 试验材料及选育策略
前期以高抗菌核病野生甘蓝B. incana(编号C01)与白菜(编号6Y733)杂交,经胚挽救、染色体加倍获得了抗菌核病的人工合成甘蓝型油菜AC1-4(相对于中双9号的枝秆和叶片,相对感病度S分别为0.75和0.57,双高品质)。以AC1-4为父本,对油菜Ogu CMS胞质不育杂种4Q292(源于Ogu CMS油菜与常规油菜的杂种F1,感菌核病,双低品质)人工授粉,通过对后代单株进行抗病位点连锁标记辅助选择(marker-assisted selection,MAS)、可育株抗性鉴定、结实率统计和品质分析,从中选择可育株,自交发展F2代;对F2代单株根据上述方式筛选携带野生甘蓝抗病QTL、且其他性状较优的个体自交;在自交后代中继续重复上述筛选,最后获得携带野生甘蓝抗病QTL、育性正常、产量和品质相对较优的 Ogu CMS恢复系材料。

1.3 分子标记辅助选择(MAS)
以野生甘蓝 C01的带型为参考,利用 4Q292和AC1-4对前期研究中鉴定到的野生甘蓝所有抗病QTL区间及侧翼最近SSR标记进行筛选,获得7个在双亲之间存在多态性的标记,涉及3个叶片抗性位点和2个茎秆抗位点(表 1)。利用表中标记对各世代单株进行分析。尽管其抗病QTL分布在C1、C3、C4、C7和C9等多条连锁群[11],但C1和C9联锁群上的2个QTL(C1-QTL和 C9-QTL)解释的表型变异度相对较高(13.6%—24.1%),为主效QTL,且QTL均具有至少2个连锁的多态性标记,因此,MAS过程中首要选择同时携带C1和C9抗病位点,其次考虑是否携带C3和C7上QTL连锁标记(对表型贡献率相对较低,且均为单标记选择)。MAS于苗期在每个世代开展,经MAS选中的单株进入后期的抗性鉴定、结实性调查和品质分析。

1.4 菌核病抗性鉴定
核盘菌菌种为 1980。参照 MEI等[23]的方法进行菌种活化、接种体(PDA菌丝块)制备及菌核病抗性鉴定。于油菜终花期后2周进行离体枝秆菌核病抗性鉴定:取一次有效分枝,截取长约30 cm一段,将两端用保鲜膜缠绕(以防止水分散失),然后转移到可控温、控湿的室内,将枝秆随机摆放于铺好湿毛巾的接种台上,并将准备好的PDA菌丝块带菌面紧贴于枝秆上,每枝秆接种2—3个菌丝块。接种完,在接种台上放上支架,以塑料膜密封,控制温度((22±1)℃)和湿度(90%—95%)。接种后第 4天测量菌斑的长度,以相对于耐病对照甘蓝型油菜中双9号的感病度(S)评价材料菌核病抗性,即S=L待测/L对照(L待测表示材料接种核盘菌的病斑长度(cm),L对照表示耐病对照中双9号的病斑长度(cm))。

1.5 结实率统计及籽粒品质分析
每个单株分别选取主花序上连续 50个自交角果和离主花序最近且未套袋一次分枝上 50个自由授粉角果,统计每角果籽粒数,分别代表自交和自由授粉结实率。用FOSS NIR system3700型近红外光谱仪检测自交种籽粒品质。光谱扫描条件:分辨率8 cm-1、扫描次数64次、光谱范围1 100—2 500 nm、温度20—25℃。

1.6 统计分析
采用SAS 8.0软件进行数据分析。

表1 分子标记辅助选择的SSR标记
Table 1 SSR markers used in marker-assisted selection for resistant QTL

pagenumber_ebook=28,pagenumber_book=1952
* LR和SR分别代表叶片与茎秆抗病QTL * LR and SR represent QTL for resistance in leaf and stem, respectively

2 结果
以高抗菌核病的野生甘蓝C01为父本,与编号为6Y733的白菜杂交,10 d后取子房解剖后进行胚挽救及染色体加倍,获得人工合成甘蓝型油菜AC1-4,其苗期形态介于野生甘蓝(图 1-A)和白菜(图 1-B)之间,与甘蓝型油菜形态相似(图 1-C),分子标记也表明,AC1-4为B. incana和6Y733的真杂种(图2)。对杂种F1进行体细胞染色体观察发现,单倍体植株均含19条染色体(图1-F),经染色体加倍的AC1-4植株体细胞均含有38条染色体(图1-G)。花粉育性鉴定结果表明,单倍体植株的花粉育性(图 1-H)远低于人工合成甘蓝型油菜AC1-4的花粉育性(可达80%)(图1-I)。叶片和枝秆菌核病抗性鉴定结果(图1-J和图1-K)表明,人工合成甘蓝型油菜AC1-4的叶片抗性和枝秆抗性都显著高于对照甘蓝型油菜中双9号和白菜亲本。

pagenumber_ebook=30,pagenumber_book=1954
图1 高抗菌核病人工合成甘蓝型油菜AC1-4的特征
Fig. 1 Characteristics of AC1-4 (resynthesized Brassica napus) with high resistance against Sclerotinia sclerotiorum

A:Brassica incana苗期特征;B:白菜6Y733苗期特征;C:AC1-4苗期特征;D:4Q292苗期特征;E:F1(4Q292 × AC1-4)的苗期特征;F:单倍体(Brassica incana × 6Y733)植株染色体;G:AC1-4染色体;H:单倍体(Brassica incana × 6Y733)花粉育性;I:AC1-4花粉育性;J:叶片抗性鉴定,从左至右依次为中双9号、白菜6Y733和AC1-4;K:枝秆抗性鉴定,从左至右依次为中双9号、白菜6Y733和AC1-4
A: Seedling of Brassica incana; B: Seedling of 6Y733 (Brassica rapa); C: Seedling of AC1-4; D: Seedling of 4Q292; E: Seedling of F1 (4Q292 × AC1-4); F:Chromosome of haploid (Brassica incana × 6Y733); G: Chromosome of AC1-4 (chromosome doubling); H: Pollen fertility identification of haploid (Brassica incana × 6Y733); I: Pollen fertility identification of AC1-4 (chromosome doubling); J: Resistance identification of leaves of Zhongshuang 9, 6Y733 and AC1-4(from left to right); K: Resistance identification of branches of Zhongshuang 9, 6Y733 and AC1-4 (from left to right)

pagenumber_ebook=30,pagenumber_book=1954
图2 SSR引物SWU260检测亲本及F1
Fig. 2 Verification of the relatives and F1 hybrid individual plants with SSR primer SWU260

A:Marker;B:Brassica incana;C:6Y733;D:AC1-4;E:4Q292

人工合成甘蓝型油菜AC1-4与Ogu CMS甘蓝型油菜杂种4Q292(图1-D)杂交产生的F1代(图1-E)代共获得146个单株,其中69株可育,77株不育。经卡方检验,F1代育性符合1∶1分离,(χ21∶1 = 0.17,P>0.05),符合预期分离比。对F1代146个单株进行分子标记辅助选择,其中128个单株遗传了源于抗病甘蓝B. incana的C1-QTL和C9-QTL,另外分布在C3和C7染色体的2个标记也在上述128个单株中表现出AC1-4与4Q292的杂合带型。剩余的18个单株中,有 11个单株丢失了 C1-QTL,2个单株丢失了C9-QTL,5个单株的C3或C7-QTL连锁标记未表现出抗病带。F1代植株的自交结实率与天然结实率显著相关(r = 0.52),但套袋自交的角果粒数变异较大,最多达24粒/角果,最少为5粒/角果,平均为9.07粒/角果。菌核病抗性鉴定表明,含有所有标记抗病带的49个F1可育单株的相对感病度S介于0.2—1.4,平均值为0.74,而不完全遗传上述7个标记抗病带的6株可育株相对感病度S介于0.9—1.5,平均值为1.23。结合结实率、分子标记结果以及收获种子状况(种子量及饱满度),选取编号为4C99和4C115的2个F1单株进入下一轮筛选,2份材料的相对感病度S分别为0.66和0.40,自交结实率分别为12.4和15.0粒/角果,自由授粉结实率分别为17.9和21.4粒/角果。

将4C99和4C115的自交种进行了夏繁种植,但由于环境条件的变化,导致大量材料F2单株未开花,最终4C99自交后代有59株开花,4C115有65株开花。对上述124个F2单株进行C9上枝秆主效抗病QTL连锁标记筛选,发现源于4C99的59个F2单株中有35个植株携带 C9-QTL,源于4C115的F2单株中有34个植株携带C9-QTL。由于夏繁地无抗性鉴定条件,因此,未对F2代植株进行抗性鉴定和筛选。随后对可育株上获得自交种的材料进行了籽粒品质分析,最终结合标记分析及品质分析数据筛选了8个F2,其芥酸含量介于7.50%—24.70%,硫苷含量介于15.88—78.63 μmol·g-1饼粕。利用该8个F2单株进行自交发展下一代,田间种植共获得的8个F2:3家系(以5X进行编号),家系大小介于46—184株。利用分子标记对8个家系进行分析(表2),F2:3代材料基因型分离明显,无论是C1还是C9上的QTL在各个家系中均存在分离,其中4个家系(5X78、5X80、5X82和5X84)中出现同时携带C1-和C9-QTL的概率(36.6%— 43.5%)显著高于其他4个家系(0—8.7%)。8个家系共计获得222株同时携带C1-和C9-QTL的植株。为了进一步缩小选择范围,利用所有抗病标记结果进行了各家系材料与抗病亲本的聚类分析,最终从5X78、5X80、5X81、5X82、5X83和 5X84中分别筛选到 4株、23株、2株、16株、1株和4株(共计50株)与抗性亲本遗传关系较近的可育株,而5X77和5X79 2个家系中没有发现与抗性亲本聚在一起的植株。对此50份材料进行枝秆菌核病抗性鉴定,同时以25株完全或部分缺失了抗病QTL的材料作为对照,结果显示,50份材料的相对感病度S介于0.34—0.89,平均值为0.60,而完全或部分缺失了抗病QTL的植株平均相对感病度S为0.98,显著高于前者(P<0.01)(图3)。对部分材料进行了籽粒品质检测(表3),发现所有材料均表现为双高品质。尽管如此,材料之间的硫苷和芥酸含量表现出分离状态,个别材料如5X82-2和 5X82-7的菜籽品质已较为接近单低水平,其中5X82-2 的硫苷含量为 45.38 μmol·g-1饼粕,5X82-7 的芥酸含量为6.5%。同时,这两个材料的相对感病度S分别为0.33和0.48(表3),表明其具有单低的品质,且菌核病抗性已得到改良。结合 MAS和枝秆抗性鉴定结果,上述材料中相对感病度S不超过0.5的单株自交种将进入下一轮筛选。

表2 各F2:3家系分子标记分析结果
Table 2 Results from molecular marker analysis of F2:3 families

pagenumber_ebook=30,pagenumber_book=1954
pagenumber_ebook=31,pagenumber_book=1955
图3 各F2:3家系中选植株的菌核病抗性
Fig. 3 The Sclerotinia resistance level of selected individuals in F2:3 families

表3 F2:3家系中部分单株抗性和籽粒品质
Table 3 Relative susceptibility and seed quality of some individuals in F2:3 generation

pagenumber_ebook=31,pagenumber_book=1955
3 讨论
甘蓝型油菜的遗传背景因“双低”选育过程而趋于狭窄,但其二倍体祖先种白菜和甘蓝起源早、栽培历史悠久,形态、农艺性状具有丰富的变异[24]。利用甘蓝和白菜培育的人工合成甘蓝型油菜,已被广泛运用到甘蓝型油菜遗传育种,比如胞质雄性不育系“Bro CMS”创制[25]、大粒甘蓝型油菜创制[26],黄籽甘蓝型油菜品系创制[27-28]、早熟性状改良[29]、黄萎病抗性的种质创建[30]、根肿病抗性改良[31]以及Ogu育性恢复基因(Rfo)转育[32]等研究中。人工合成甘蓝型油菜与天然甘蓝型油菜遗传差异大,可有效拓宽天然甘蓝型油菜的遗传资源。然而,人工合成甘蓝型油菜的含油量较低,芥酸、硫苷含量较高,甚至出现一些源于祖先种的不良性状,常需要不断进行品质改良。本研究所使用的 AC1-4也表现出双高品质,以其为亲本发展的低世代中出现芥酸或硫苷含量较高的材料。后续研究中,将进一步发展高世代,进行双低品质材料的选择。

Ogura细胞质雄性不育败育彻底、转育容易,是芸薹属作物的安全授粉控制系统[1]。甘蓝型油菜 Ogu胞质不育系[18-19]及 Ogu CMS的恢复系[20-22]已成功创建,但目前油菜基因库中缺乏有效抗源,限制了抗菌核病的油菜Ogu CMS恢复系的研究。甘蓝型油菜的祖先种甘蓝是改良油菜菌核病抗性的优良资源[11,33]。在早期研究中,鉴定到野生甘蓝B. incana具有较好的菌核病抗性[7],并对其抗病位点进行了QTL定位[11]。利用该材料我们创制了人工合成甘蓝型油菜,该人工合成材料理论上应该遗传B. incana的整套C基因组染色体,因此,该人工合成系与Ogu CMS油菜的杂种F1所有植株理应继承B. incana的抗病QTL位点。然而,利用QTL区间或侧翼标记对F1代的标记分析后发现,有极少数单株存在个别QTL丢失的情况。这可能是由人工合成甘蓝型油菜的遗传不稳定造成的:人工合成甘蓝型油菜含有A、C两套共线性较高的基因组,减数分裂时可能产生A、C染色体之间的异源配对[34-35],形成多价体及单价体[36-37],从而导致染色体分离紊乱和非整倍体配子的产生[38-39],使某些遗传信息在后代可能丢失。

本研究利用人工合成系和Ogu CMS油菜寻找到7个与抗病QTL连锁的多态性标记,涉及4个染色体上5个抗病QTL(包括叶片抗性QTL和茎秆抗病QTL)。因此本研究首先采用C1和C9抗病QTL两侧均有多态性的标记对材料进行分析和选择,而其他3个QTL只开放出一个单标记,这些标记仅用于辅助选择和遗传分析,而用于MAS的准确性低。油菜及甘蓝的菌核病抗性均为数量性状,主要受到加性效应控制[11-14,40],因此,本研究在每个世代尽量筛选同时具有C1和C9 QTL、且尽量在其余3个标记结果中选择具有抗病甘蓝带型的个体。后期的抗性鉴定显示,标记选中的材料平均抗性显著高于 QTL出现丢失的材料,一定程度证明了标记选择的有效性。

结合 MAS和抗性选择,尽管在每个世代均能鉴定到同时携带多个抗病QTL且相对感病度S较低的单株,但是从对 F2:3家系的分析中可以看出,所有家系中的单个抗病位点均未达到纯合,且硫苷和芥酸含量也表现出分离。但是,将根据 1.2的选育策略对 F2:3中选择到的候选植株进行进一步的选择,且后期的选择将注重以家(株)系为单位进行分析,以确定目标位点及控制育性的核基因Rf是否纯合;同时需要增加家(株)系中个体数,从而出现更多的交换重组,从中获得既具有抗病位点、又具有低硫苷和低芥酸位点的重组个体;再者,可以考虑通过目前获得的抗病且芥酸或硫苷含量接近单低的个体相互杂交,聚合不同性状的优良位点,从而获得优质且抗性提高的恢复株系。

4 结论
以人工合成甘蓝型油菜为桥梁,野生甘蓝 B.incana的菌核病抗性可被有效转移到甘蓝型油菜,从而改良油菜Ogu CMS恢复材料的菌核病抗性。

References

[1] OGURA H. Studies on the new male-sterility in Japanese radish, with special reference to the utilization of this sterility towards the practical raising of hybrid seeds. Memoirs of the Faculty of Agriculture Kagoshima University, 1968, 6: 39-78.

[2] LI C X, LIU S Y, SIVASITHAMPARAM K, BARBETTI M J. New sources of resistance to sclerotinia stem rot caused by Sclerotinia sclerotiorumi n Chinese and Australian Brassica napus and B. juncea germplasm screened under Western Australian conditions. Australasian Plant Pathology, 2009, 38: 149-152.

[3] ZHAO J, PELTIER A J, MENG J L, OSBORN T C, GRAU C R.Evaluation of sclerotinia stem rot resistance in oilseed Brassica napus using a petiole inoculation technique under greenhouse conditions.Plant Disease, 2004, 88: 1033-1039.

[4] 陈玉卿, 张洁夫, 伍贻美, 侯庆树, 周益军, 韩红. 芸薹属油菜种质资源抗(耐)菌核病、病毒病的鉴定. 中国油料作物学报, 1993, 2:4-7.CHEN Y Q, ZHANG J F, WU Y M, HOU Q S, ZHOU Y J, HAN H.Studies on virus and sclerotinia resistance of rapeseed germplasm in Brassica napus. Chinese Journal of Oil Crop Sciences, 1993, 2: 4-7.(in Chinese)

[5] 陈碧云, 伍晓明, 陆光远, 高桂珍, 许鲲. 欧洲野生甘蓝资源的菌核病抗性鉴定与评价. 中国油料作物学报, 2008, 10: 393-396.CHEN B Y, WU X M, LU G Y, GAO G Z, XU K. Identification and evaluation of disease resistance of European wild cabbage resources to Sclerotinia sclerotiorum. Chinese Journal of Oil Crop Sciences,2008, 10: 393-396. (in Chinese)

[6] GARG H, ATRI C, SANDHU P S, KAUR B, RENTON M, BANGA S K, SINGH H, SING C, BARBETTI M J, BANGA S S. High level of resistance to Sclerotinia sclerotiorum in introgression lines derived from hybridization between wild crucifers and the crop Brassica species B. napus and B. juncea. Field Crops Research, 2010, 117:51-58.

[7] MEI J Q, QIAN L W, DISI J O, YANG X R, LI Q F, LI J N, FRAUEN M, CAI D G, QIAN W. Identification of resistant sources against Sclerotinia sclerotiorum in Brassica species with emphasis on B.oleracea. Euphytica, 2011, 177: 393-399.

[8] MEI J Q, LI Q F, YANG X R, QIAN L W, LIU L Z, YIN J M,FRAUEN M, LI J N, QIAN W. Genomic relationships between wild and cultivated Brassica oleracea L. with emphasis on the origination of cultivated crops. Genetic Resources and Crop Evolution, 2010, 57:687-692.

[9] SNOGERUP S, GUSTAFSSON M, VON BOTHMER R. Brassica sect. Brassica (Brassicaceae) I: Taxonomy and variation. Willdenowia,1990, 19(2): 271-365.

[10] SONG K, OSBORN T, WILLIAMS P. Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs):3.Genome relationships in Brassica and related genera and the origin of B. oleracea and B. rapa (syn. campestris). Theoretical and Applied Genetics, 1990, 79 (4): 497-506.

[11] MEI J Q, DING Y J, LU K, WEI D Y, LIU Y, DISI J O, LI J N, LIU L Z, LIU S Y, MCKAY J, QIAN W. Identification of genomic regions involved in resistance against Sclerotinia sclerotiorum from wild Brassica oleracea. Theoretical and Applied Genetics, 2013, 126:549-556.

[12] WEI L J, JIAN H J, LU K, FILARDO F, YIN N W, LIU L Z, QU C M, LI W, DU H, LI J N. Genome-wide association analysis and differential expression analysis of resistance to sclerotinia stem rot in Brassica napus. Plant Biotechnology Journal, 2016, 14: 1368-1380.

[13] ZHANG J, QI C, PU H, CHEN S, CHEN F. Genetic map construction and sclerotinia resistance QTLs identification in rapeseed (Brassica napus L.): Prague, Czech: Proceedings of 13th International Rapeseed Congress, 2011: 673-676.

[14] ZHAO J W, UDALL J A, QUIJADA P A, GRAU C R, MENG J L,OSBORN T C. Quantitative trait loci for resistance to Sclerotinia sclerotiorum and its association with a homeologous non-reciprocal transposition in Brassica napus L.. Theoretical and Applied Genetics,2006, 112: 509-516.

[15] DING Y J, MEI J Q, LIU Y, WANG L, LI Y H, WAN H F, LI J N,QIAN W. Transfer of sclerotinia stem rot resistance from wild Brassica oleracea into B. rapa. Molecular Breeding, 2015, 35: 225.

[16] MEI J Q, LIU Y, WEI D Y, WITTKOP B, DING Y J, LI Q F, LI J N,WAN H F, LI Z Y, GE X H , FRAUEN M , SNOWDON R J, QIAN W,FRIEDT W. Transfer of sclerotinia resistance from wild relative of Brassica oleracea into Brassica napus using a hexaploidy step.Theoretical and Applied Genetics, 2015, 128: 639-644.

[17] DING Y J, MEI J Q, LI Q F, LIU Y, WAN H F, WANG L, BECKER H C, QIAN W. Improvement of Sclerotinia sclerotiorum resistance in Brassica napus by using B. oleracea. Genetic Resources and Crop Evolution, 2013, 60: 1615-1619.

[18] BANNEROT H, BOULIDARD L, CHUPEAU Y. Unexpected difficulties met with the radish cytoplasm in Brassica oleracea.Eucarpia Cruciferae Newsletter, 1977, 2: 16-18.

[19] PELLETIER G, PRIMARD C, VEDEL F, CHETRIT P, REMY R,ROUSSELLE M, RENARD M. Intergeneric cytoplasmic hybridization in cruciferae by protoplast fusion. Molecular and General Genetics,1983, 191(2): 244-250.

[20] PRIMARD-BRISSET C, POUPARD J P, HORVAIS R, EBER F,PDLLETIER G, RENARD M, DELOURME R. A new recombined double low restorer line for the Ogu-INRA cms in rapeseed (Brassica napus L.). Theoretical and Applied Genetics, 2005, 111(4): 736-746.

[21] 李旭锋, 李琳, 秦金红, 吴书惠, 袁旭, 王劲, 杨凡. 油菜萝卜质不育系测交后代恢复材料 F2(TC1)的选育及细胞遗传学研究. 中国农业科学, 2001, 34(1): 108-110.LI X F, LI L, QIN J H, WU S H, YUAN X, WANG J, YANG F.Cytogenetic study on the restored material F2 (TC1) from test cross progenies of B. napus with OguCMS. Scientia Agricultura Sinica,2001, 34(1): 108-110. (in Chinese)

[22] 陈卫江, 李莓, 王同华, 惠荣奎, 涂金星, 傅廷栋. 甘蓝型油菜萝卜细胞质雄性不育恢复材料的创制. 中国农业科学, 2012, 45(8):18-25.CHEN W J, LI M, WANG T H, HUI R K, TU J X, FU T D. Creative process of a new restorer material with Ogu CMS in Brassica napus.Scientia Agricultura Sinica, 2012, 5(8): 18-25. (in Chinese)

[23] MEI J Q, WEI D Y, DISI J O, DING Y J, LIU Y, QIAN W. Screening resistance against Sclerotinia sclerotiorum in Brassica crops with use of detached stem assay under controlled environment. European Journal of Plant Pathology, 2012, 134: 599-604.

[24] WU J, LI F, XU K, GAO G, CHEN B, YAN G, WANG N, QIAO J, LI J, LI H, ZHANG T, SONG W, WU X. Assessing and broadening genetic diversity of a rapeseed germplasm collection. Breeding Science, 2014, 64(4): 321-330.

[25] 牛应泽, 汪良中, 刘玉贞, 郭世星. 利用人工合成甘蓝型油菜创建油菜新种质. 中国油料作物学报, 2003, 25(4): 11-12.NIU Y Z, WANG L Z, LIU Y Z, GUO S X. Development of new germplasm in rapeseed through resynthesis of new Brassica napus L..Chinese Journal of Oil Crop Sciences, 2003, 25(4): 11-12. (in Chinese)

[26] 富贵, 赵志刚, 杜德志. 利用青海大黄油菜和芥蓝合成大粒甘蓝型油菜. 中国油料作物学报, 2012, 34(2): 136-141.FU G, ZHAO Z G, DU D Z. Large seed resynthesized Brassica napus from hybrid of Brassica rapa and Brassica oleracea var. alboglabra.Chinese Journal of Oil Crop Sciences, 2012, 34(2): 136-141. (in Chinese)

[27] RAHMAN M H. Production of yellow-seeded Brassica napus through interspecific crosses. Plant Breeding, 2001, 120(6): 463-472.

[28] CHEN B Y, HENEEN W K. Resynthesized Brassica napus L.: A review of its potential in breeding and genetic analysis. Hereditas,1990, 111(3): 255-263.

[29] AKBAR M A. Resynthesis of Brassica napus aiming for improved earliness and carried out by different approaches. Hereditas, 1990,111(3): 239-246.

[30] RYGULLA W, FRIEDT W, SEYIS F, LÜHS W, EYNCK C, VON TIEDEMANN A, SNOWDON R J. Combination of resistance to Verticillium longisporum from zero erucic acid Brassica oleracea and oilseed Brassica rapa genotypes in resynthesized rapeseed (Brassica napus) lines. Plant Breeding, 2007, 126(6): 596-602.

[31] DIEDERICHSEN E, SACRISTAN M D. Disease response of resynthesized Brassica napus L. lines carrying different combinations of resistance to Plasmodiophora brassicae Wor. Plant Breeding, 2010,115(1): 5-10.

[32] SZAŁA L, SOSNOWSKA K, POPŁAWSKA W, LIERSCH A,OLEJNIK A, KOZŁOWSKA K, BOCIANOWSKI J, CEGIELSKATARAS T. Development of new restorer lines for CMS ogura system with the use of resynthesized oilseed rape (Brassica napus L.).Breeding Science, 2016, 66(4): 516-521.

[33] YOU M P, ULOTH M B, LI X X, BANGA S S, BANGA S K,BARBETTI M J. Valuable new resistances ensure improved management of sclerotinia stem rot (Sclerotinia sclerotiorum) in horticultural and oilseed Brassica species. Journal of Phytopathology,2016, 164(5): 291-299.

[34] AHMAD H, HASNAIN S, KHAN A. Evolution of genomes and genome relationship among the rapeseed and mustard. Biotechnology,2002, 1: 78-87.

[35] TIAN E T, JIANG Y F, CHEN L L, ZOU J, LIU F, MENG J L.Synthesis of a Brassica trigenomic allohexaploid (B. carinata×B. rapa)de novo and its stability in subsequent generations. Theoretical and Applied Genetics, 2010, 121(8): 1431-1440.

[36] CHOUDHARY B R, JOSHI P, SINGH K. Synthesis, morphology and cytogenetics of Raphanofortii (TTRR, 2n=38): A new amphidiploid of hybrid Brassica tournefortii (TT, 2n = 20) ×Raphanus caudatus (RR,2n=18). Theoretical and Applied Genetics, 2000, 101(5/6): 990-999.

[37] CHRUNGU B, VERMA N, MOHANTY A, PRADHAN A,SHIVANNA K R. Production and characterization of interspecific hybrids between Brassica maurorum and crop brassicas. Theoretical and Applied Genetics, 1999, 98(3/4): 608-613.

[38] QIAN W, CHEN X, FU D H, ZOU J, MENG J L. Intersubgenomic heterosis in seed yield potential observed in a new type of Brassica napus introgressed with partial Brassica rapa genome. Theoretical and Applied Genetics, 2005, 110(7): 1187-1194.

[39] TEL-ZUR N, ABBO S, MIZRAHI Y. Cytogenetics of semi-fertile triploid and aneuploid intergeneric vine cacti hybrids. Journal of Heredity, 2005, 96 (2): 124-131.

[40] WU J, CAI G Q, TU J Y, LI L X, LIU S, LUO X P, ZHOU L P, FAN C H, ZHOU Y M. Identification of QTLs for resistance to Sclerotinia stem rot and BnaC.IGMT5.a as a candidate gene of the major resistant QTL SRC6 in Brassica napus. PLoS ONE, 2013, 8(7): e67740.

Improvement of the Resistance Against Sclerotinia sclerotiorum in Ogu CMS Restorer in Brassica napus Using Wild B. oleracea as Donor

WAN HuaFang, DING YiJuan, CHEN ZhiFu, MEI JiaQin, QIAN Wei
(College of Agronomy and Biotechnology, Southwest University/Academy of Agricultural Sciences, Southwest University,Chongqing 400716)

Abstract: 【Objective】Sclerotinia stem rot (SSR) is a devastating disease in rapeseed (Brassica napus L.). The resistance breeding is greatly limited due to the lack of resistance resources in rapeseed. Ogu CMS is one of the most effective pollination control systems in Brassica. Up to date, however, there has no Ogu CMS restorer with high resistance against SSR reported in rapeseed. High resistant source was reported in a wild B. oleracea which carried two major resistant loci, C1-and C9-QTL. The objective of this study is to transfer the resistance loci from the resistant B. oleracea and develop resistant Ogu CMS rapeseed restorer.【Method】Resynthesized rapeseed line was developed via interspecies cross between a SSR-resistant wild B. oleracea(namely B. incana) and B. rapa by embryo rescue and chromosome doubling. The hybridization was carried out between the resynthesized line and a rapeseed Ogu CMS line, followed by successive self-pollination. Marker assisted selection (MAS) was carried out in each generation to select individual plants carrying resistant loci from B. incana. These plants were screened for resistance level to SSR by inoculation test on detached branches. The plants which exhibited significant lower susceptibility (S) than rapeseed cultivar Zhongshuang 9 (the tolerant control) were then chosen for seed quality analysis. Fertile plants with relatively lower erucic acid and glucosinolate content were self-pollinated for the next generation development. Finally, self-pollinated lines carrying resistant QTL, exhibiting high resistant to SSR, performing good seed quality and yield were considered as SSR-resistant rapeseed Ogu CMS restorer.【Result】Resynthesized rapeseed line AC1-4 was successfully developed from the resistant B. oleracea and B.rapa, which showed significantly higher resistance level to SSR than the tolerant control Zhongshuang 9. From 146 F1 plants derived from AC1-4 and a rapeseed Ogu CMS line 4Q292, two individual plants (4C99 and 4C115) were selected to develop F2 generation,which carried resistant QTLs (C1- and C9-QTL) and exhibited normal seed setting and low susceptibility values (0.66 and 0.40,respectively). Among 124 F2 plants, eight individual plants with good self-fertility were selected to develop 982 F2:3 plants, from which a total of 50 individual plants were identified to carry resistant QTL C1-QTLand C9-QTL. Especially, two fertile plants(5X82-2 and 5X82-7) exhibited ‘single low' seed quality (6.5% erucic acid in 5X82-7, and 45.38 μmol·g-1 meal glucosinolate in 5X82-7) and low susceptibility to SSR (S = 0.48 and 0.33, respectively).【Conclusion】It successfully improved SSR-resistance in Ogu CMS rapeseed restorer using wild B. oleracea as donor, which will be helpful for developing Ogu CMS restorer with high resistance against SSR and good seed quality in rapeseed.

Key words: Brassica napus; sclerotinia resistance; Ogu CMS; restorer

开放科学(资源服务)标识码(OSID):pagenumber_ebook=26,pagenumber_book=1950

收稿日期:2019-09-16;接受日期:2019-12-18

基金项目:国家重点研发计划(2018YFD0100500)、重庆自然基金重点项目(cstc2019jcyj-zdxmX0012)

联系方式:万华方,E-mail:wanhua05@163.com

通信作者梅家琴,E-mail:jiaqinmey@163.com。钱伟,E-mail:qianwei666@hotmail.com

(责任编辑 李莉)

奥鹏易百网www.openhelp100.com专业提供网络教育各高校作业资源。
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|Archiver|手机版|小黑屋|www.openhelp100.com ( 冀ICP备19026749号-1 )

GMT+8, 2024-5-7 01:27

Powered by Discuz! X3.5

Copyright © 2001-2024 Tencent Cloud.

快速回复 返回顶部 返回列表