奥鹏易百

 找回密码
 立即注册

扫一扫,访问微社区

QQ登录

只需一步,快速开始

查看: 376|回复: 0

清远麻慢羽公鸡的基因分型与生产性能研究

[复制链接]

2万

主题

27

回帖

6万

积分

管理员

积分
60146
发表于 2021-10-17 13:46:49 | 显示全部楼层 |阅读模式
扫码加微信
清远麻慢羽公鸡的基因分型与生产性能研究
李华1,2,方桂军1,华国洪2,谭淑雯1,3,张正芬2,洪煜宇1,于辉1,2

(1广东省动物分子设计与精准育种重点实验室/佛山科学技术学院,广东佛山 528225;2广东天农食品有限公司,广东清远 511827)

摘要:【目的】为了探讨慢羽系中杂合子公鸡基因分型准确率和构建无ev21基因抗病品系,探讨育种群中慢羽公鸡基因分型、慢羽中的微长型(L1)、倒长型(L2)、等长型(L3)、未出型(L4)4种表型以及与生产性能关系。另外,通过表达量的差异甄别快慢羽候选基因催乳素受体基因(PRLR)和精子鞭毛蛋白2(SPEF2)的可行性。【方法】采用PCR-RFLP对清远麻慢羽公鸡进行分子分型,通过后裔测定的测交方法验证其分子分型的准确性,运用方差分析对各组别进行检验,采用百分数资料的t检验法比较各基因分型组别间对生产性能影响;利用RT-PCR 对快慢羽的候选基因进行定量分析,重点比较了快羽中的R2型与慢羽中的L2型和L4型的定量差异。【结果】568只慢羽公鸡中,缺失体组(ev21-)占比41.73%,ev21+ 组占比为58.27%,其中纯合子与杂合子分别占比为8.80%和49.47%;经测交验证79只公鸡后代,慢羽纯合子和缺失体基因分型准确率为46.83%,基因分型杂合子实质为纯合子。慢羽公鸡中ev21+组其后代的等长型比率显著高于ev21- 组(P≤0.05),ev21-组公鸡的105日龄的通管性能极显著高于ev21+组(P≤0.01)。一日龄的鸡,在R2对慢羽(L2+L4)中PRLR表达差异不显著(P>0.05),但其表达量在R2与L4型对比中则下调,达到显著水平(0.01<P≤0.05),而SPEF2在慢羽中表达均极显著高于快羽鸡(P≤0.01),其中与快羽R2 型比较,SPEF2分别在未出型(L4)及倒长型(L2)中均上调表达,差异均达极显著水平(P≤0.01)。【结论】研究尚需探索出慢羽杂合子准确率高的基因分型新方法,慢羽杂合子公鸡判别目前离不开现场测交验证;可以组建无ev21基因抗病品系;需进一步探讨造成ev21+ 组与ev21- 组别间等长型比率以及羽毛成熟性差异的原因;一日龄的SPEF2与PRLR均为影响快慢羽表型不同亚型差异的候选基因。

关键词:清远麻公鸡;慢羽;基因分型;生产性能

0 引言
【研究意义】快慢羽杂合子公鸡的分子鉴别、慢羽鸡缺失体抗病品系组建以及候选基因的甄别对家禽分子育种具有重要理论和应用价值,快慢羽品系生长和羽速差异对生产具有重要意义。【前人研究进展】快慢羽为伴性遗传性状,慢羽鸡主尾羽短于快羽鸡,邱祥聘等把快羽分为R1型(主翼羽长于覆主翼羽5mm以上)和R2型(主翼羽长于覆主翼羽2 mm而短于5 mm以内),慢羽分为微长型(主翼羽长于覆主翼羽在2mm以内,L1)、倒长型(主翼羽短于覆主翼羽,L2 )、等长型(主翼羽与覆主翼羽等长,L3 )和未出型(主翼羽未长出或主翼羽与覆主翼羽均未长出,L4)[1]。快慢羽初生雏鸡的雌雄鉴别已广泛应用于生产,具有极大的市场价值,国内已广泛开展了快慢羽的表型与生产性能的研究[2],其中大部分研究为不同品种快慢羽品系不同阶段对体重等生产性能有不同的影响[3-5];有关快慢羽各亚型对生产性能的影响研究甚少,如尹华贵等研究了120日龄长型、微长型、等长型、短型、未出型5种不同羽型泸州黄羽乌鸡的体重之间并无显著差异[3-6]。慢羽基因座K与内源性病毒21(ev21)基因紧密连锁,可通过对ev21的插入与否检测区分快慢羽,准确率一般达99% 左右[7-9]。对杂合慢羽公鸡的鉴别,大多数育种场目前主要采用测交依据表型鉴别,对其分子鉴别处于探讨阶段,且尚无报道慢羽公鸡以及其亚型分子检测的准确性[10-14]。催乳激素受体基因(PRLR)与精子鞭毛蛋白2(SPEF2)是影响快慢羽的候选基因[15-16],但后续的学者研究结论不一,如PRLR在一日龄杏花鸡和文昌鸡的慢羽翅膀皮肤中表达显著高于快羽[15],但此结论未在苏禽绿壳蛋鸡中得到支持[16];同样,SPEF2在苏禽绿壳蛋慢羽鸡中表达显著高于快羽[16],但使用微阵列法分析认为SPEF2在一日龄杏花鸡翅膀皮肤中不表达[15]。【本研究切入点】慢羽公鸡杂合子基因分型与测交判型比对其准确率,慢羽各亚型、分子分型与生产性能关系,快慢羽表型形成的候选基因和调控机制尚不清晰。【拟解决的关键问题】测交验证慢羽公鸡杂合子分子分型准确率,慢羽各表型、基因型与生产性能的关系;利用荧光定量PCR(RT-PCR)初步筛选快慢羽的候选基因。

1 材料与方法
1.1 材料
本试验在广东天农食品有限公司原种场进行,包括核心群慢羽纯系M系和祖代慢羽公鸡,饲养方式按照公司种鸡饲养标准实施;按照《家禽生产性能名词术语和度量统计方法》在2014—2015年期间测定了105日龄的公鸡冠高、体重、胫长、胫围和通管值[17]。选取一日龄快羽型(R2)、慢羽中主翼羽与覆主翼羽均未长出羽毛的未出型(L4)和倒长型(L2)各6只鸡,在佛山科学技术学院通过荧光定量PCR(RT-PCR)分析SPEF2和PRLR的mRNA表达量。

1.2 慢羽公鸡基因分型
在翅静脉采集血样,柠檬酸葡萄糖溶液(ACD)抗凝。采用北京艾德来生物科技有限公司提供的小量全血基因组DNA快速提取试剂盒提取DNA后进行PCR扩增,采用Iraqi[7]等设计的引物和程序进行扩增,扩增产物用限制性内切酶(Hae Ⅲ)进行酶切,酶切结果用1.5% 的琼脂糖电泳进行检测。

1.3 慢羽候选基因定量分析
采集翅膀皮肤,液氮研磨样品,使用Trizol 法根据说明书提取翅膀皮肤总RNA。使用宝生物工程(大连)有限公司反转录试剂盒PrimeScriptTM RT reagent Kit、荧光定量试剂盒SYBR® Premix Ex TaqTMⅡ,分别进行反转录和定量。其中内参β-actin引物为:FGAG AAATTGTGCGTGACATCA,R为CCTGAACCTCTC ATTGCCA,PRLR定量引物为F:GCCCAGACTACAG AACATCA,R:GAGGATCCGAGCTGTTACTT,SPEF2定量引物为F:ACACACCAGAACAGTGAAGC,R:A GGTCTGTAAAGGGCTGAAC,使用ABI 7500定量PCR 仪进行定量,退火温度为57℃。

1.4 统计分析
试验数据用Excel进行初步整理后,运用SPSS 18.0软件进行组别间的单因素方差分析的LSD检验,并对两两样本间的百分率进行t检验,基因的定量数据使用2- ΔΔCt方法进行分析。

2 结果
2.1 慢羽公鸡酶切分型
清远麻鸡成年公鸡的酶切分型结果表明(图1):纯合子只有一条带(1 450 bp),ev21缺失体有两条带(1 068 bp、382 bp)、杂合子有3条带(1 450 bp、1 068 bp和382 bp)。由表1可知,检测的568只慢羽公鸡中纯合子、缺失体和杂合子分别占总数的8.80%、41.73%和49.47%,其中慢羽纯系中纯合子10.09%、缺失体43.86%和杂合子46.05%;祖代纯合子、缺失体和杂合子分别占比7.94%、40.29%和51.77%。总体来看,缺失体高达41.73%、纯合子与杂合子占比分别为8.8%和49.74%。

width=332.25,height=193.3
M为Marker DL2 000;2为纯合个体;5、8、9为杂合个体;1、3、4、6、7为ev21缺失个体

M represents Marker DL2 000; 2 is homozygote, 5, 8 and 9 are heterozygotes, while 1, 3, 4, 6 and 7 are deletants

图1 慢羽公鸡的酶切分型

Fig. 1 PCR-RFLP results of late-feathering Qingyuan Partridge cocks

表1 慢羽系公鸡分子分型

Table 1 Genotyping cocks of the late-feathering line

width=482.7,height=76.9
2.2 现场测交与基因分型比对
通过性能比较和家系分析,筛选了79只公鸡进行继代并测交,验证分子检测的准确性,核心群慢羽纯系结果表明(表2):出苗883只鸡全部为慢羽,其中微长型11.78%(104只)、倒长型为62.74%(554只)、等长型7.70%(68只)和未出型17.78%(157只)。测交验证基因分型为杂合子的42只公鸡其后代无一表现为快羽,分子分型判型错认为的杂合子实际为纯合子(53.17%),慢羽纯合子和缺失体基因分型准确率为46.83%;缺失体组(ev21-)占比高达41.77%,可以组建抗病品系。合并杂合子组和纯合子组为有ev21插入组(ev21+),与缺失体组(ev21-)进行比较,仅ev21-组的等长型比率显著低于ev21+ 组(0.01<P≤0.05),其余组间差异不显著(P>0.05)。

2.3 慢羽公鸡不同基因分型间生产性能的比较
对慢羽系核心群后备留种成年的慢羽公鸡,分别检测105日龄的平均体重、冠高、胫长和胫围(表3),结果表明ev21- 组通管性能优于ev21+ 组,达到差异极显著水平(P≤0.01),其余指标间差异均不显著(P>0.05)。

表2 慢羽公鸡测交的表型与分子分型比较

Table 2 Comparison of phenotypes and genotypes in late-feathering cocks by test cross

width=482.35,height=130.8
同列肩标无字母表示差异不显著(P>0.05),标字母相邻差异显著(0.01<P≤0.05),标字母相间差异极显著(P≤0.01)。下同

Values in the same column with no letter indicate not significant difference (P>0.05); Values in the same column with adjacent letters was significant difference (0.01<P≤0.05); Values in the same column with interphase letters was highly significant difference (P≤0.01). Same as below

表3 105日龄慢羽公鸡生产性能的比较

Table 3 Comparisons of the production performance of the late-feathering cocks at 105-day-old


2.4 候选基因定量表达分析
以一日龄慢羽型(L2+L4)为对照,SPEF2在快羽R2 型中极显著下调(P≤0.01),而PRLR表达差异不显著(P>0.05)。在快慢羽各亚型比较中,以未出型(L4)作为对照,PRLR和SPEF2在倒长型(L2)中均表达差异不显著(P>0.05),PRLR 和SPEF2均分别在快羽R2型中显著低表达,分别达到显著(0.01<P≤0.05)和极显著差异水平(P≤0.01);与慢羽L2 型相比,SPEF2 在快羽R2型中极显著低表达(P≤0.01,图2)。

3 讨论
3.1 分子检测分型的准确性
本试验所有慢羽系的公鸡已经通过多个世代的现场测交早已纯化[7, 9],但基因分型结果与现场测交选育并不吻合,基因分型鉴定出为杂合子的公鸡,现场测交验证为纯合子,因此,基因分型准确率仅为46.83%,本试验首次通过分子分型结合测交验证种公鸡杂合子的准确率。李竞一等[10]运用相同的方法对大午种禽有限公司商品代慢羽公鸡进行鉴别,准确率达到95.45%,由于只是商品代,并未进行测交验证其杂合性;李珊珊等[13]对麒麟公鸡同理鉴别了高比例的慢羽杂合公鸡,并通过短片段的测序支持分子分型的结果,但未通过测交验证。近期TAKENOUCHI等[12]通过多品种的研究,表明ev21插入并非是导致慢羽的原因。因此,只有探明慢羽形成的真实基因,才能破解理论与实践脱节的难题。清远麻鸡慢羽缺失型高比例支持了课题组前几个世代的报道[11],这为组建高免疫应答的抗病性品系打下了基础。

width=347.65,height=145.1
A以慢羽型(L2+L4)为对照;B以未出型(L4)为对照;同基因标字母相同表示差异不显著(P>0.05),标字母相邻差异显著(0.01<P≤0.05),标字母相间差异极显著(P≤0.01)

A indicating the control group is (L2+L4); B indicating the control group is L4; Gene expression with the same letter indicate not significant difference(P>0.05); Gene expression with adjacent letters was significant difference (0.01<P≤0.05); Gene expression with interphase letters was highly significant difference (P≤0.01)

图2 RT-PCR法定量分析PRLR与SPEF2的表达

Fig. 2 Expression of PRLR and SPEF2 by RT-PCR

现场选育中,慢羽四种表型一般选留倒长型和等长型,剔除主翼羽和覆主翼羽均未长出的未出型和相对难以区分的微长型。本试验首次将慢羽不同基因分型与慢羽4种亚表型结合深度解析,表明无ev21组插入的慢羽公鸡的后代依然以倒长型最多,未出型和等长型次之,微长型最少,这与朱庆等的结果相一致[18]。ev21+组与ev21-组比较,仅ev21-组的等长型比率显著低于ev21+组(P≤0.05),这表明了ev21插入对等长型羽速生长有一定影响,但其他亚型影响却不显著,究竟是什么分子调控机制造成这种差异,值得进一步研究。ELFERINK等[19]对K座位的分子结构研究表明了K座位中的ev21结合位点不是和K座位连锁,而是ev21插入其中间的非翻译区,本研究所找到的ev21缺失个体,是2个URa所在的区域发生了缺失,还是K座位内部发生了重组,还有待测序进一步研究。李珊珊[13]通过短片段的杂合子与纯合子测序发现有明显差异,但测交结果已经否定了基于此方法建立的杂合子分型的准确性。鸡Z染色体上慢羽基因位点大致在9 607 480—10 607 757 bp处,且9 966 364—10 142 688 bp 基因组的复制导致了慢羽表型,值得进一步从大范围的测序和功能分析去洞悉[20-22]。基于近期慢羽的新分型方法的研究,有待于进一步在各快慢羽各亚型中实施和验证[14]。值得注意的是,谢后清等[23]1985年最早报道慢羽微长型细分为主微长型和覆微长型,除了PRLR、dPRLR、SPEF2、dSPEF2互作调控以及与ev21基因插入有关外[15-16,21,24],通过对慢羽的未出型与倒长型分别与快羽的R2型的研究结果表明,快慢羽的调控与常染色体基因、miRNA和LncRNA等调控有关[22,25-26],今后尚需要进一步从胚胎和生后阶段从不同亚型和组学探讨快慢羽差异[27-29],设计更为严密的试验阐述羽毛的发育与调控。

3.2 慢羽公鸡不同分型对生产性能的影响
早期的研究主要集中在不同日龄的快慢羽系对生产性能的影响[2],本试验首次揭示了不同慢羽公鸡基因分型对105日龄的体重、冠高、胫长和胫围生产性能无影响(P>0.05),但ev21-组通管性能优于ev21+组,达到差异极显著水平(P≤0.01),说明建立ev21-品系利于通管,尚需要进一步探讨其通管机制的差异[26]。此外,早前报道ev21的存在与禽白血病病毒(ALV)的免疫应答的降低有关,与慢羽鸡感染外源性白血病毒后,其病毒血症的发生率升高,引起产蛋下降和高死亡率有关[27]。因此,育成无ev21 基因的慢羽品系利于免疫和羽毛早熟,意义重大。

3.3 候选基因定量表达分析
PRLR和SPEF2位于快慢羽等位基因座K上,被认为是快慢表型形成的候选基因。在慢羽的杏花鸡和文昌鸡中,其PRLR表达显著高于快羽,SPEF2 在快慢羽中表达无差异[15]。本研究却发现初生时R2与L4型中的PRLR基因表达差异显著(0.01<P≤0.05),但以一日龄慢羽型(L2+L4)为对照时,PRLR快慢羽表达差异却不显著(P>0.05)。表明PRLR参与了羽速发育[15],但在快慢羽不同亚型中由于表达量差异而有所不同,尚需要针对不同快慢羽亚型进行具体分析。SPEF2 在慢羽各亚型中表达极显著高于快羽鸡,这与在苏秦绿壳蛋鸡中结论相似[16]。因此,认为SPEF2和PRLR均可作为快慢羽不同表型的各亚型在一日龄具有显著差异的候选基因。鉴于鸡不同部位的羽毛其进化和发育不一致,且具有胚胎期和生后期的时空表达差异,对快慢羽分子作用机制尚待进一步深入解析[24,28-32]。

4 结论
慢羽杂合子公鸡基因分型目前不能替代测交,杂合子公鸡选育判别必须借鉴现场测交,但慢羽公鸡基因分型可为组建无ev21基因抗病品系打下基础。本试验仅ev21-组的等长型比率显著低于ev21+ 组(0.01<P≤0.05),ev21- 组通管性能优于ev21+ 组,达到差异极显著水平(P≤0.01),其余组间差异均不显著(P>0.05)。一日龄的SPEF2和PRLR均可作为鉴别快慢羽表型的候选基因,但其在不同慢羽亚型和生理阶段的作用还需进一步解析。

References

[1] 黎怀星, 邱祥聘, 曾凡同, 谢后清. 鸡不同品系及其后代的羽速羽型研究. 四川农业大学学报, 1988, 3(6):241-246.

LI H X, QIU X P, ZENG F T, XIE H Q. Studies on feather types and feathering in several early-and late-feathering strains and their crossbreds. Agricultural Journal of Sichuan, 1988, 3(6): 241-246. (in Chinese)

[2] 王建华, 李花妮, 石凤英. 鸡羽毛生长基因的研究进展. 家禽科学, 2012, 8:44-46.

WANG J H, LI H N, SHI F Y. Research progress of chicken feather growth genes. Poultry Science, 2012, 8: 44-46. (in Chinese)

[3] 刘小辉, 赵彩娟, 李祥龙, 逯春香, 赵书雨. 快慢羽基因对坝上长尾鸡早期体重与羽速生长的影响. 湖北畜牧兽医, 2014, 35(11): 11-13.

LIU X H, ZHAO C J, LI X L, LU C X, ZHAO S Y. Effect of the fearthering gene weight and ferrhering rate of bashing Long-tailed chickens. Hubei Journal of Animal and Veterinary Science, 2014, 35(11): 11-13. (in Chinese)

[4] 宋素芳, 康相涛, 孙桂荣, 王彦斌, 李明, 黄艳群. 羽速基因对0~20周龄固始鸡生长发育的影响. 河北农业科学, 2003, 8: 62-64.

SONG S F, KANG X T, SUN G R, WANG Y B, LI M, HUANG Y Q. Effect of feather growth gene on the growth and development of 0~20 week-old Gushi chicken. Hebei Agricultural Science, 2003, 8:62-64. (in Chinese)

[5] 娄义洲, 徐寒梅, 娄锋, 谢璞. 武农Ⅰ系乌骨鸡快慢羽系羽毛生长速度与体重关系的研究. 云南畜牧兽医, 2001, 4:3-4.

LOU Y Z, XU H M, LOU F, XIE P. Study on the relationship between feather growth rate and body weight of Wunong silky fowl. Yunnan Journal of Animal Science and Veterinary Medicine, 2001, 4:3-4. (in Chinese)

[6] 尹华贵, 曾子建, 朱汉春, 潘广碧, 章元, 周克勇. 泸州黄羽乌鸡羽速与体重关系的研究. 中国家禽, 2002, 24(6):7-8.

YIN H G, ZENG Z J, ZHU H C, PAN G B, ZHANG Y, ZHOU K Y. The relationship between feathering speed and body weight in the black-meat chicken. China Poultry, 2002, 24(6): 7-8. (in Chinese)

[7] IRAQI F, SMITH E J. Determination of the zygosity of ev21-K in late-feathering male White Leghorns using the polymerase chain reaction. Poultry Science, 1994, 73(7): 939-946.

[8] 李培周, 李华, 杜炳旺, 陈洁波, 陶林, 陈琦, 林丽超. 贵妃鸡羽速基因分子检测及相关早熟性状分析. 中国家禽, 2013, 3(5): 5-8.

LI P Z, LI H, DU B W, CHEN J B, TAO L, CHEN Q, LIN L C. Molecular detection of fearthering locus and prematurity traits of princess chicken. The Chinese Poultry, 2013, 3(5): 5-8. (in Chinese)

[9] 白春艳, 陈强, 杨长锁, 潘玉春. 鸡羽速基因与內源禽白血病病毒的关系及其在育种中的应用. 中国家禽, 2011(08):5-8.

BAI C Y, CHEN Q, YANG C S, PAN Y C. The relationship between chicken feather speed gene and endogenous avian leucosis virus and its application in breeding. China Poultry, 2011(08): 5-8. (in Chinese)

[10] 李竞一, 李荣妮, 王晓亮, 王翔宇, 杨永林, 鲍海港, 赵春江, 凌遥. 慢羽鸡ev21结合位点缺失个体的检测. 中国畜牧杂志, 2011, 11(47):6-8.

LI J Y, LI R N, WANG X L, WANG X Y, YANG Y L, BAO H G, ZHAO C J, LING Y. Detection of ev21 binding site deletion in slow-feathering chicke. Chinese Journal of Animal Science, 2011, 11(47): 6-8.(in Chinese)

[11] 李培周, 朱晓萍, 邝智祥. 清远麻鸡羽速基因的分子检测及其与体重和冠高相关性分析. 中国畜牧杂志, 2013, 7(49):10-12.

LI P Z, ZHU X P, KUANG Z X. Molecular detection of the feather speed gene and its correlation with weight and crown height in Qingyuan chicken. Chinese Journal of Animal Science, 2013, 7(49): 10-12. (in Chinese)

[12] Takenouchi A, Toshishige M, Ito N, Tsudzuki M. Endogenous viral gene ev21 is not responsible for the expression of late feathering in chickens. Poultry Science. 2017, 97:403-411.

[13] 李珊珊, 李东华, 吕福琨, 董晶, 李艳青, 杜炳旺. 慢羽系麒麟公鸡纯合个体分子检测方法的建立, 河南农业科学, 2016: 45(7): 118-121.

LI S S, LI D H, LV F K, DONG J, LI Y Q, DU B W. Establishment of molecular detection method for homozygous individuals of slow-feathering unicorn cocks.Henan Agricultural Sciences, 2016, 45(7): 118-121. (in Chinese)

[14] ZHANG X, WANG H, ZHANG L, WANG Q, DU X, GE L, ZHOU R, LI L, LI X. Analysis of a genetic factors contributing to feathering phenotype in chickens. Poultry Science. 2018, 97(10):3405-3413.

[15] LUO C, SHEN X, RAO Y, XU H, TANG J, SUN L, NIE Q, ZHANG X. Differences of Z chromosome and genomic expression between early- and late-feathering chickens. Molecular Biology Reports, 2012, 39(5): 6283-6288.

[16] ZHAO J C, YAO J, LI F, YANG Z, SUN Z, QU L, WANG K, SU K, ZHANG A, MONTGOMERY S A, GENG T, CUI H. Identification of candidate genes for chicken early- and late-feathering. Poultry Science, 2016, 95(7): 1498-1503.

[17] 邝智祥, 李华, 张正芬, 陈洁忠, 何兰花. 清远麻鸡白羽系部分生产性能的测定与分析. 中国家禽, 2015, 37(18):51-52.

KUANG Z X, LI H, ZHANG Z F, CHEN J Z, HE L H. Determination and analysis of production performance of white feather line of Qingyuan chicken. The Chinese Poultry, 2015, 37(18): 51-52. (in Chinese)

[18] 朱庆, 杨志勤, 杨爱民. 蛋鸡慢羽羽型的分布及其与生产性能的关系探讨. 四川农业大学学报, 1996, 1(14):1-5.

ZHU Q, YANG Z Q, YANG A M. The distribution of slow-feathering types their relationship with performance in chicken layers. Journal of Sichuan Agricultural University, 1996, 1(14): 1-5. (in Chinese)

[19] ELFERINK M G, VALLEE A A, JUNGERIUS A P, CROOIJMANS R P, GROENEN M A. Partial duplication of the PRLR and SPEF2 genes at the late feathering locus in chicken. BMC Genomics, 2008, 9: 391.

[20] BU G, HUANG G, FU H, LI J, HUANG S, WANG Y. Characterization of the novel duplicated PRLR gene at the late-feathering K locus in Lohmann chickens. Journal of Molecular Endocrinology, 2013, 51(2): 261-276.

[21] Derks MFL, Herrero-Medrano JM, Crooijmans RPMA, Vereijken A, Long JA, Megens HJ, Groenen MAM. Early and late feathering in turkey and chicken: same gene but different mutations. Genetic Selection Evolution, 2018 , 50(1):7.

[22] Fang G, Jia X, Li H, Tan S, Nie Q, Yu H, Yang Y. Characterization of microRNA and mRNA expression profiles in skin tissue between early-feathering and late-feathering chickens. BMC Genomics, 2018, 19(1):399.

[23] 谢后清, 周铁茅, 刘福蓉. 成都白鸡快慢羽纯系的选育及羽型研究. 四川农学院学报, 1985, 1(3):9-14.

XIE H Q, ZHOU T M, LIU F R. Study on breeding and feather type of chengdu white chicken pure line with fast and slow feathering. Journal of Sichuan Agricultural University, 1985, 1(3): 9-14. (in Chinese)

[24] Okamura A, Masumoto A, Takenouchi A, Kudo T, Aizawa S, Ogoshi M, Takahashi S, Tsudzuki M, Takeuchi S. Changes in prolactin receptor homodimer availability may cause late feathering in chickens. General and Comparative Endocrinology,2019, 272:109-116.

[25] DAVIS-TURAK J C, ALLISON K, SHOKHIREV M N, PONOMARENKO P, TSIMRING L S, GLASS C K, JOHNSON T L, HOFFMANN A. Considering the kinetics of mRNA synthesis in the analysis of the genome and epigenome reveals determinants of co-transcriptional splicing. Nucleic Acids Research, 2015, 43(2): 699-707.

[26] Lin X, Gao Q X, Zhu L Y, Zhou G X, Ni S W,Han H, Yue Z C. Long non-coding RNAs regulate Wnt signaling during feather regeneration. Development, 2018 (145): 162388.

[27] 宁中华, 王忠, 彭丹芳, 侯卓成, 徐桂云. 禽白血病和羽速基因对白壳蛋鸡生产性能的影响. 中国畜牧杂志, 2005, 41(10):23-25.

NING Z H, WANG Z, PENG D F, HOU Z C, XU G Y. Effects of avian leucosis and feathering gene on performance of white layer. Chinese Journal of Animal Science, 2005, 41(10): 23-25. (in Chinese)

[28] Su L N, Li H, Tan S W, Fang G J, Yu H,Yang Y L. Mechanisms of early- and late-feathering in Qingyuan partridge chickens. Biotechnology & Biotechnological Equipment, 2019, 33(1): 1172-1181.

[29] 陶林,杜炳旺,张丽. 卷羽鸡毛囊发育规律及卷羽候选基因KRT75 遗传特征分析. 中国农业科学, 2015,48(4): 821-830.

TAO L, DU B W, ZHANG L. The development of frizzled follicle and genetic characteristics of candidate gene KRT75 in frizzled feather chicken. Scientia Agricultura Sinica, 2015, 48(4): 821-830. (in Chinese)

[30] Lin CM, Jiang TX, Widelitz RB, Chuong CM. Molecular signaling in feathermorphogenesis. Current Opinion in Cell Biology,2006, 18(6): 730-741.

[31] BAO W, GREENWOLD M J, SAWYER R H. Expressed miRNAs target feather related mRNAs involved in cell signaling, cell adhesion and structure during chicken epidermal development. Gene, 2016, 591(2):393-402.

[32] Widelitz R B, Jiang T X, Chen C W J, Stott N S, Jung H S, Chuong C M. Wnt-7a in feather morphogenesis: involvement of anterior-posterior asymmetry and proximal-distal elongation demonstrated with an in vitro reconstitution model.Development, 1999, 126(12):2577-2587.

Study of Genotyping and Performance in Late-Feathering Qingyuan Partridge Cocks
LI Hua1,2, FANG GuiJun1, HUA GuoHong2, TAN ShuWen1,3, ZHANG ZhengFen2, HONG YuYu1 ,YU Hui1,2

(1Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding/Foshan University, Foshan 528225, Guangdong; 2Guangdong Tinoo’s Foods Corporation Ltd., Qingyuan 511827, Guangdong)

Abstract: 【Objective】In order to verify the genotyping accuracy of heterozygotic cocks, and to construct the resistant strain without ev21 gene, the relationship among genotypes, four late-feathering sub-phenotypes (named micro-type as L1, inverted type as L2, isometric type as L3, and ungrown type as L4) and the production performance were investigated in the late-feathering Qingyuan partridge cocks. The feasibility was demonstrated by the expression profile difference of two candidate genes, i.e., Prolactin Receptor (PRLR) and Sperm Flagellar Protein 2 (SPEF2), between the early- and late-feathering Qingyuan partridge cocks. 【Method】Genotypes were detected by PCR-RFLP in the late-feathering Qingyuan partridge cocks, and its accuracy was verified by progeny testing using a test cross. The production differences among genotyping groups were compared by variance analysis of percentage data and t-test. The expressions of two candidate genes were quantified by real-time quantitative PCR (RT-PCR) in both the early (R2) feathering and late (L2 and L4) feathering cocks. 【Result】Among the 568 late-feathering cocks, the proportion of the deletant group (ev21- group) was 41.73%, and that of the ev21+ group was 58.27%, of which the homozygotes and the heterozygote accounted for 8.80% and 49.47%, respectively. By the test cross, the genotyping accuracy was 46.83% both in the homozygote group and the deletant group, indicating that the heterozygote was in fact homozygote. The descendant percentage of the isometric late-feathering type in ev21+ group was significantly higher than that in ev21- group (P≤0.05). The feather maturity of the late-feathering cocks at 105-day-old in the ev21- group was extremely significantly higher than that in ev21+ group (P≤0.01). At one-day-old chicks, the expression of PRLR gene between R2 versus (L2+L4) showed no any difference (P>0.05),but its expression between R2 versus L4 was significantly down-regulated (0.01<P≤0.05). While the expression of SPEF2 gene in late-feathering chickens was extremely significantly higher than that in early-feathering chickens (P≤0.01). By comparing with the R2 group, SPEF2 significantly differentially up-regulated in the L4 and L2 groups (P≤0.01). 【Conclusion】New genotyping method should be developed for improving the accuracy of the heterozygote in the late feathering cocks. Up to now, a test cross is essential for the chicken production. Construction of the ev21- resistant strain is viable in late-feathering chicken breeding. Furthermore, studies need to be conducted to figure out the difference of isometric subtype ratio and feather maturity between the ev21+ group and the ev21- group. Besides, SPEF2 andPRLR were candidate genes for subtypes affecting the difference of early-feathering and late-feathering chickens at 1-day-old.

Key words: Qingyuan partridge cocks; late-feathering; genotyping; performance

开放科学(资源服务)标识码(OSID):width=42.5,height=42.5

doi: 10.3864/j.issn.0578-1752.2020.09.017

收稿日期:2017-11-15;

接受日期:2020-03-11

基金项目:国家科技支撑计划(2015BAD03B00)、广东省科技项目(2016B020233007,2017-1649)、广东省动物分子设计与精准育种重点实验室(2019B030301010)、清远市产学研合作项目(2018B02)

联系方式:李华,E-mail:okhuali@fosu.edu.cn

(责任编辑 林鉴非)

奥鹏易百网www.openhelp100.com专业提供网络教育各高校作业资源。
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|Archiver|手机版|小黑屋|www.openhelp100.com ( 冀ICP备19026749号-1 )

GMT+8, 2024-5-7 01:33

Powered by Discuz! X3.5

Copyright © 2001-2024 Tencent Cloud.

快速回复 返回顶部 返回列表