奥鹏易百

 找回密码
 立即注册

扫一扫,访问微社区

QQ登录

只需一步,快速开始

查看: 192|回复: 0

土壤侵蚀对紫色土坡耕地耕层物理及力学特性的影响

[复制链接]

2万

主题

27

回帖

6万

积分

管理员

积分
60146
发表于 2021-10-17 13:43:16 | 显示全部楼层 |阅读模式
扫码加微信
土壤侵蚀对紫色土坡耕地耕层物理及力学特性的影响
江娜1,史东梅1,蒋光毅2,宋鸽1,司承静3,叶青1

(1西南大学资源环境学院,重庆 400715;2重庆市水土保持生态环境监测总站,重庆 401147;3重庆市万州区水利局,重庆 404000)

摘要:【目的】紫色土坡耕地是南方丘陵区农业生产重要的耕地资源,其耕层土壤退化主要为物理退化。为了探讨土壤侵蚀对紫色土坡耕地耕层物理特性及力学特性退化的影响,在耕层土壤退化分级的基础上,定量分析了不同侵蚀程度下紫色土坡耕地耕层物理、力学特性及土壤退化指数的变化特征。【方法】采用铲土侵蚀模拟试验方法,以未侵蚀地块为对照组(CK),对比分析了侵蚀5 cm(S-5)、10 cm(S-10)、15 cm(S-15)、20 cm(S-20)条件下紫色土坡耕地耕层土壤渗透性、土壤力学特性及土壤退化指数变化特征,对坡耕地耕层物理、力学特性的退化程度进行了定量分析。【结果】(1)紫色土坡耕地不同侵蚀程度下耕层土壤渗透性为CK>S-5>S-10>S-15>S-20,土壤初始入渗率、稳定入渗率、平均入渗率、饱和导水率随着侵蚀程度加剧而降低,S-20土壤渗透性能最差;不同侵蚀程度下紫色土坡耕地均表现为0—20 cm土层的土壤渗透性指标高于20—40 cm土层的。(2)紫色土坡耕地不同侵蚀程度耕层土壤力学性质为CK<S-5<S-10<S-15<S-20,土壤抗剪强度、土壤紧实度随侵蚀程度加剧而增加。不同侵蚀程度下紫色土坡耕地各层土壤力学指标均表现为0—20 cm土层的高于20—40 cm土层的。(3)土壤抗剪强度对第一轴贡献率最大,土壤抗剪强度是影响不同侵蚀程度下紫色土坡耕地土壤物理性质及力学特性变化的主要因素。紫色土坡耕地土壤物理性质及力学特性与第一轴相关性排序表现为稳定入渗率>土壤紧实度>饱和导水率>平均入渗率>初始入渗率>抗剪强度。(4)不同侵蚀程度下紫色土坡耕地土壤退化指数大小为S-5(-8.71%)>S-10(-10.95%)>S-20(-12.17%)>S-15(-15.37%),S-15处理对耕层物理性质影响最大,S-15 土壤退化指数最小,土壤退化程度为重度退化。不同侵蚀条件下,紫色土坡耕地土壤退化指数10—20 cm土层的最大,土壤退化对10—20 cm土层影响最小。【结论】紫色土坡耕地土壤退化现象严重,不同侵蚀程度土壤的退化等级分为4级,分别为未退化、轻度退化、中度退化、重度退化。研究结果可为坡耕地耕层质量退化过程辨识及恢复调控提供技术参数。

关键词:紫色土;土壤侵蚀;坡耕地;耕层;土壤退化作用;土壤物理特性

0 引言
【研究意义】紫色土坡耕地主要分布在重庆市和四川省,是长江流域重要侵蚀带[1]。紫色土坡耕地土壤物理性质退化严重且力学性质高而出现板结现象,导致坡耕地耕层土壤发生退化[2]。耕层是指机械扰动土壤的深度层,通过耕作建立能协调水、肥、气和热,满足作物生长发育需要的土层[3-8],坡耕地耕层土壤是农业生产的根本,也是土壤侵蚀的对象[4]。因此,对紫色土坡耕地耕层物理及力学退化进行研究,可为紫色土坡耕地耕层土壤耕层质量退化过程与恢复调控提供技术参数。【前人研究进展】土壤侵蚀导致的坡耕地退化直接表现为坡耕地耕层变薄、土壤物理、化学性质恶化和土壤生产力下降等特征,对坡耕地生态安全具有很大的潜在危险性[5-6]。土壤物理退化主要表现在土层变薄、土壤结构恶化等方面[6],紫色土退化类型分为土壤物理性退化、土壤构造性退化和土壤营养性退化[7],紫色土坡耕地合理耕层建立以实现土壤侵蚀有效控制和土壤生产力稳定保持为目标,有效土层厚度、耕层厚度、土壤容重、土壤抗剪强度、土壤有机质、土壤入渗性可作为紫色土坡耕地耕层评价最小数据集[8]。因此国内外学者从土壤侵蚀对土壤属性影响角度开展了广泛研究,如LARNEY和OYEDELE等[9-10]采取铲土0、5、10、15、20 cm和覆盖表土等措施的侵蚀模拟研究了坡耕地土壤侵蚀对土壤质量、土壤生产力的影响。国内学者刘慧等[11]通过剥离黑土表层 0、5、10、15、 20、25 和 30 cm 土壤以模拟侵蚀厚度不同对耕层土壤生产力的变化,分析土壤侵蚀厚度对土壤理化性质影响。张瑞等[12]为探讨东北黑土区土壤侵蚀对土壤持水性能的影响,采用表土剥蚀方法,发现了土壤侵蚀与土壤入渗性能间的关系,随着侵蚀程度的增加,土壤初始入渗率、土壤渗透速率显著降低。陈奇伯等[13]对云南干热河谷坡耕地研究发现,表土未扰动小区的稳渗速率、初始渗速率均明显高于铲区不同侵蚀厚度表土层的小区,说明表土未扰动小区的土壤入渗性能均好于有不同程度土壤侵蚀的小区。成婧等[14]对渭北旱塬不同程度土壤侵蚀及生产力恢复试验研究发现,与未扰动土相比较,剥离表土10 cm和20 cm的土壤容重均增加,孔隙度则减小,土壤侵蚀能够使土壤的物理性质恶化。【本研究切入点】不同土壤侵蚀程度可能会导致坡耕地耕层土壤物理、力学特性发生差异性变化,从而使土壤退化程度迥异,但土壤侵蚀与土壤退化两者间的定量关系不明确。因此本文采用铲土侵蚀模拟试验方法,设置不同侵蚀程度坡耕地地块,从土壤侵蚀-土壤物理力学性能变化-耕层侵蚀退化相互作用角度,对紫色土坡耕地耕层物理特性、力学特性退化过程及侵蚀所导致的坡耕地质量退化等级进行分析,并讨论了耕层退化条件下土壤可蚀性、潜在水土流失等级变化。【拟解决的关键问题】辨识在不同土壤侵蚀条件下,坡耕地耕层土壤物理、力学性能退化特征及土壤侵蚀影响耕层质量退化的程度、途径,分析坡耕地退化耕层的潜在水土流失危险性等级,为紫色土坡耕地侵蚀性耕层质量恢复调控提供技术参数。

1 材料与方法
1.1 铲土侵蚀模拟试验小区设计
试验小区位于重庆市万州区,属亚热带季风气候,年平均气温17.7℃,年平均年日照时数1 484.4 h,年平均降水1 243 mm;土壤类型以紫色砂泥页岩母质上发育的中性紫色土为主,农作物种植制度为油菜/玉米。本试验采用人为铲土法[15-17],即人为铲去不同厚度的土层,然后对比铲土小区与未铲土小区土壤物理性质差异,如公式所示。

width=187.6,height=51.5 (1)
式中,hi为原始i土层的厚度;d为多年平均侵蚀厚度,本文根据紫色丘陵区坡耕地径流小区观测结果,d取0.25 cm;m为耕层厚度,取20 cm;n为侵蚀年限,模拟侵蚀程度为 0、5、10、15和 20 cm,因此将原始土层在耕层(20 cm)以下以5 cm为间隔分层。根据公式(1)计算出,侵蚀n年的不同侵蚀深度耕层土壤的构成(表1)。

本试验小区共设5个侵蚀程度的处理,分别为:未侵蚀为对照组(CK)、侵蚀5 cm(S-5)、侵蚀10 cm(S-10)、侵蚀15 cm(S-15)、侵蚀20 cm(S-20),试验小区布设如图1-a所示,每个试验小区面积12 m2,田面坡度均为15°。

表1 不同侵蚀程度下坡耕地原位模拟小区的原始土层剩余厚度

Table 1 Residual thickness of original soil layer in in situ simulation plot of sloping farmland with different erosion degree


width=361.75,height=173.8
a.试验小区布设;b.耕作层特征[3,8] a. Layout of experimental plots; b. Characteristics of tillage layer

图1 不同侵蚀程度的试验小区布设

Fig. 1 Layout of experimental plots with different erosion degrees

紫色土坡耕地的土体构型(图1-b)分为耕作层(0—20 cm)、心土层(20—40 cm)、底土层(>40 cm)。耕作层又分为表土层(0—15 cm)和犁底层(15—20 cm),耕作层和心土层可为作物提供生长需求。

1.2 样品采集与分析
铲土侵蚀模拟试验小区建于2018年2月,在4月采集土样,采样时间为雨后放晴3 d以上。在铲土侵蚀模拟试验小区内采集土样,以0—10、10—20、20—30、30—40 cm分层采样,样品用塑料薄膜密封,各土层分别用环刀(100 cm3)法[18]测定土壤容重、总孔隙度、土壤毛管孔隙度、土壤初始入渗速率、土壤稳定入渗速率、土壤平均入渗速率;土壤砂粒、粉粒、黏粒测定采用吸管法[18];土壤抗剪强度采用便携式三头抗剪仪(14.10 Pocket Vane Tester 型,荷兰)进行测定;土壤紧实度采用土壤紧实度测定仪(TJSD- 750-II)进行测定[18]。

1.3 数据分析方法
(1)土壤退化特征分析

土壤退化指数(SDI)可以定量地反映土壤退化和改善程度,根据ADEJUWON等[19]提出的土壤退化指数的计算公式,计算公式如下:

width=114.85,height=30.7 (2)
式中,SDI为土壤退化指数,xij是第i个侵蚀程度第j个土壤物理指标值,xcj是第j个物理指标的参照值,n为纳入计算的指标值。本研究中以CK的土壤理化指标值作为S-5、S-10、S-15、S-20的参照值,试验实际选取土壤紧实度、土壤抗剪强度、土壤饱和导水率、土壤初始入渗率、平均入渗率、稳定入渗率总计6个指标,由此计算出SDI,SDI是6个土壤指标的综合计算结果,可反映土壤侵蚀程度对紫色土坡耕地土壤退化状况,SDI>0,正值表明土壤质量有所改善,SDI<0,代表土壤退化程度高于参照点,其值越小,退化越重。

(2)土壤可蚀性分析

本文采用SHIRAZI等[20]公式法计算土壤可蚀性K值,计算公式如下:

width=214.25,height=46.8 (3)
式中,fi为原土壤中第i个粒径级质量分数(%);mi为第i个粒径级两端数值的算术平均值(mm);K值为美国制,计算后将K值乘以0.1317,转为国际制单位:t·hm2·h·MJ-1·mm-1·hm-2。

(3)数据处理

主成分分析是通过降维将多个指标转化为少数指标,消除多重指标间的相关性,使彼此之间具有独立性[21]。运用SPSS 24对评价指标进行主成分分析,计算评价指标的Norm值。Norm值为该指标在由成分组成的多维空间中矢量常模的长度,长度越长,表明该指标在所有主成分的综合载荷越大,其解释综合信息的能力就越强。Norm值计算公式如下:

width=78.05,height=30.9 (4)
式中,Nik是第i个指标在特征值≥1的前k个主成分上的综合载荷;uik是第i个指标在第k个主成分上的载荷;λk是第k个主成分的特征值。分别计算各组指标Norm值,选取每组中Norm值最大的指标进入土壤退化指数的计算。

采用SPSS 24、EXCEL 2019统计软件对总孔隙度、毛管孔隙度、抗剪强度等指标进行分析,利用Canoco 4.5进行不同土壤侵蚀程度下土壤物理性质分析。

2 结果
2.1 坡耕地耕层土壤入渗性能变化特征
不同侵蚀程度下紫色土坡耕地土壤渗透性变化规律相似,均表现为:土壤初始入渗率>平均入渗率>稳定入渗率。不同侵蚀程度下初始入渗率差异显著(P<0.05),由图2-a可知,不同侵蚀程度条件下,S-5、S-10、S-15、S-20处理比对照组初始入渗率分别下降了16.36%、28.93%、37.41%、47.11%。随着侵蚀程度增加,土壤初始入渗率逐渐减小。在0—20 cm耕层中,CK土壤初始入渗率最大(63.24 mm·min-1),S-20土壤初始入渗率最小(37.50 mm·min-1);在20—40 cm心土层中,CK土壤初始入渗率最大(38.86 mm·min-1),S-20土壤初始入渗率最小(16.50 mm·min-1);CK与S-20土壤初始入渗率差异显著(P<0.05)。在S-20条件下,0—10 cm土层初始入渗率与30—40 cm土层相比下降了66.66%,0—10 cm土层与30—40 cm土层初始入渗率差异显著(P<0.05),表明随着土层深度增加,土壤入渗性能降低。

不同侵蚀程度下稳定入渗率差异显著,由图2-b可知,S-5、S-10、S-15、S-20比对照组稳定入渗率分别减少了12.75%、17.74%、20.42%、27.42%,土壤稳定入渗率随着侵蚀程度增加呈减小趋势。在0—20 cm耕层中,CK土壤稳定入渗率最大(12.84 mm·min-1),S-20土壤稳定入渗率最小(9.27 mm·min-1);在20—40 cm心土层中,CK土壤稳定入渗率最大(11.60 mm·min-1),S-20土壤稳定入渗率最小(8.47 mm·min-1)。在0—10、10—20、20—30cm土层中,CK与S-20土壤稳定入渗率差异显著(P<0.05);在30—40 cm土层中,各侵蚀程度的土壤稳定入渗率差异不显著。不同侵蚀程度下,土壤稳定入渗率随着土层深度的增加呈减小的趋势。

width=361.75,height=577.25
不同大写字母表示同一垂直层次不同侵蚀程度差异显著(P<0.05),不同小写字母表示同一侵蚀程度不同垂直层次差异显著(P<0.05)。图3同

Different uppercase letters indicate significant differences in erosion degree of the same vertical layer (P<0.05), different small letters indicate significant differences in the same erosion degree of different vertical layers (P<0.05). The same as Fig. 3

图2 不同侵蚀程度下土壤入渗性能的变化特征

Fig. 2 Change characteristics of soil infiltration under different erosion degrees

不同侵蚀程度下平均入渗率差异显著,由图2-c可知,S-5、S-10、S-15、S-20比对照组平均入渗率分别减小了10.46%、20.06%、24.49%、31.71%,CK与S-20土壤平均入渗率差异显著(P<0.05)。在0—20 cm耕层中,CK土壤平均入渗率最大(35.84 mm·min-1),S-20平均入渗最小(26.50 mm·min-1);在20—40 cm心土层中,CK土壤平均入渗最大(29.60 mm·min-1),S-20土壤平均入渗最小(18.19 mm·min-1)。对于同一侵蚀程度条件下,在S-15条件下,30—40 cm土层土壤平均入渗率与0—10、10—20、20—30 cm土层土壤平均入渗率相比分别减少了36.67%、47.37%、14.84%。在S-20处理下,30—40 cm土层土壤平均入渗率与0—10、10—20、20—30 cm土层土壤平均入渗率相比分别减少了42.86%、56.35%、27.33%,0—10 cm与30—40 cm土层土壤平均入渗率差异显著(P<0.05),因此对于不同侵蚀程度下,土壤平均入渗率随着土层深度的增加呈减小的趋势。

不同侵蚀程度处理下饱和导水率差异显著,由图2-d可知,与对照相比,S-5、S-10、S-15、S-20土壤饱和导水率减小了16.00%、18.43%、37.27%、34.88%,CK与S-15、S-20土壤饱和导水率差异显著(P<0.05)。在0—20 cm耕层中,CK土壤饱和导水率最大(8.87 mm·min-1),S-15土壤饱和导水率最小(6.25 mm·min-1);在20—40 cm心土层中,CK土壤饱和导水率最大(6.41 mm·min-1),S-20土壤饱和导水率最小(3.31 mm·min-1)。对于不同蚀程度下,土壤饱和导水率大小依次为:0—10 cm>10—20 cm>20—30 cm>30—40 cm,0—10 cm土层与30—40 cm的土壤饱和导水率差异显著(P<0.05),土壤导水率随土层深度增加呈减小趋势。

以饱和导水率(X1)、初始入渗率(X2)、稳定入渗率(X3)、平均入渗率(X4)为评定指标进行主成分分析,综合比较不同侵蚀程度下不同土层土壤入渗性能。从表2可知,第一个主成分的方差累积贡献率达71.06%,即涵盖了大部分信息,根据因子得分系数矩阵,F1、F2为两个主成分,其主成分方程为f=0.730F1+0.270F2,通过方程计算了不同侵蚀程度的上下层土壤渗透性得分,并进行排序(表2,表3),并根据得分进行土壤退化分级,土壤退化程度分为4个等级,未退化(>1),轻度退化(0—1),中度退化(-1—0),重度退化(-2—-1)。由表可知不同处理土壤入渗性能存在差异,在0—10 cm土层中S-15表现最差。在10—20 cm土层中S-10、S-15表现最差,在20—30 cm、30—40 cm土层中S-15、S-20表现最差。在0—40 cm土层中CK表现最优。从平均得分来看,土壤渗透性能随着侵蚀程度增加呈减小趋势。

2.2 坡耕地耕层土壤力学特性变化特征
图3表明,不同侵蚀程度土壤抗剪强度差异显著,S-5、S-10、S-15、S-20土壤抗剪强度与对照相比分别增加2.33%、6.75%、11.81%、15.24%,土壤抗剪强度随着侵蚀程度的增加呈增加的趋势。在耕层0—20 cm中,CK抗剪强度最小值为2.77 kpa,S-20抗剪强度在0—20 cm耕层的最大值为3.10 kPa;在20—40 cm心土层中,CK抗剪强度最小值为3.28 kPa,S-20抗剪强度在耕层最大值为3.72 kPa,CK与S-10/S-20土壤抗剪强度差异显著(P<0.05),20—40 cm土层的土壤抗剪强度高于0—20 cm土层的抗剪强度;S-10与S-20土壤抗剪强度差异显著(P<0.05)。CK、S-5、S-10、S-15、S-20条件下0—10 cm与30—40 cm土层的抗剪强度差异显著(P<0.05)。

表2 不同侵蚀程度下耕层土壤渗透性能主成分分析

Table 2 Principal component analysis of tillage soil permeability under different erosion degrees


表3 不同侵蚀程度下耕层土壤渗透性能排序

Table 3 Tillage soil permeability order of different erosion degrees

width=483.15,height=149.25
不同侵蚀程度下土壤紧实度差异显著,S-5、S-10、S-15、S-20土壤抗剪强度与对照相比分别增加4.92%、8.01%、13.32%、63.11%,CK与S-15、S-20差异显著(P<0.05)。在0—20 cm土层中,CK的土壤紧实度最小值为53 N·cm2,S-20的土壤紧实度最大值为106.17 N·cm2;在20—40 cm土层中,CK的土壤紧实度最小值为103 N·cm2,S-20的土壤紧实度最大值为148.29 N·cm2,20—40 cm土壤紧实度高于0—20 cm的紧实度,不同侵蚀程度下,0—10 cm与30—40 cm土层的土壤紧实度差异显著(P<0.05)。

2.3 坡耕地耕层土壤物理性质相关性变化特征
由表4可知,紫色土坡耕地土壤渗透性4个指标与土壤总孔隙度、毛管孔隙度、粉粒含量显著正相关(P<0.01),与土壤容重、砂粒含量、黏粒含量显著负相关(P<0.01)。以紫色土坡耕地物理指标土壤容重(Z1)、土壤总孔隙度(Z2)、毛管孔隙度(Z3)、砂粒(Z4)、粉粒(Z5)、黏粒(Z6)为自变量,饱和导水率(X1)、初始入渗率(X2)、平均入渗率(X3)、稳定入渗率(X4)为因变量,进行逐步回归分析,得到土壤入渗性能4个指标指导因子方程:X1=-3.570+ 0.141Z5-0.1042Z4,X2=213.895-123.493Z1,X3=100.607- 51.588Z1,X4=-2.975+0.240Z5。表明了不同侵蚀程度处理下使土壤物理性质发生改变,使得土壤渗透性发生变化。

表4 坡耕地土壤物理性质相关性分析

Table 4 Correlation analysis of soil physical properties on slope farmland


**在0.01水平(双侧)上显著相关,*在0.05水平(双侧)上显著相关

** Significant correlation at 0.01 level (bilateral) and * Significant correlation at 0.05 level (bilateral)

由表4可知,土壤力学性质2个指标与土壤容重、土壤黏粒显著正相关(P<0.01),与土壤总孔隙度、土壤毛管孔隙度、粉粒含量与土壤紧实度显著负相关(P<0.01),以紫色土坡耕地物理指标土壤容重(Z1)、总孔隙度(Z2)、毛管孔隙度(Z3)、砂粒(Z4)、粉粒(Z5)、黏粒(Z6)为自变量,土壤紧实度(Y5)、抗剪强度(Y6)为因变量,进行逐步回归分析,得到土壤力学特性2个指标的指导因子方程:Y5=-57.046+ 6.687Z6,Y6=0.584+0.104Z6。

土壤侵蚀程度与土壤物理性质CCA排序统计结果表明,第一、第二排序轴特征值分别为0.0023、0.0004,第一轴第二轴特征值大,信息包含的土壤物理性质多,所有排序轴的特征值和为0.000309,解释变量占94.85%,调整解释变量92.50%,前四轴土壤侵蚀程度与土壤物理性质相关系数均在70.00%以上,通过蒙特卡罗置换检验,第一排序轴和所有排序轴的显著性P值均为0.002,达到非常显著性水平,说明样本间差异由抽样误差所致的概率较小,与其土壤物理性质因子间的关系较为密切。表明土壤物理及力学性质排序结果能解释土壤侵蚀程度与土壤物理性质及力学特性的关系。

从排序结果可知,排序图中各物理及力学性质的空间聚集性反映了土壤侵蚀程度对土壤退化作用的影响。在物理性质及力学性质排序图分布上可知,沿逆时针方向来看,未退化主要分布在第二象限,轻度退化点主要分布在第三象限,中度退化点、重度退化点主要分布在第四象限。

根据图4可知,从箭头长度而言,土壤抗剪强度与土壤紧实度呈正相关,土壤抗剪强度与稳定入渗率呈负相关。土壤抗剪强度、土壤紧实度、初始入渗率对第一轴的贡献率很大,土壤抗剪强度与第一轴呈负相关关系。这可能是土壤侵蚀导致土壤抗剪强度增加,土壤紧实度增加,土壤出现板结现象。因此,土壤抗剪强度是不同侵蚀程度耕层物理性质及力学特性变化的主要因素,土壤紧实度、初始入渗率是不同侵蚀程度耕层物理性质及力学特性变化的次要因素。从箭头与土壤物理性质第一排序轴的夹角分析,不同侵蚀程度对入渗、力学性质的影响相关性排序为:稳定入渗率>土壤紧实度>饱和导水率>平均入渗率>初始入渗率>抗剪强度,土壤力学指标与土壤入渗性指标显著负相关。

2.4 坡耕地耕层土壤退化特征
紫色土坡耕地耕层土壤退化采用土壤物理及力学指标反映,由表5的坡耕地耕层土壤退化指标描述性统计分析可知,变异系数(CV)主要反映土壤退化特征的空间变异性及敏感性,变异系数越大,说明评价土壤退化特征差异性越敏感[21]。由表6可知,饱和导水率、土壤紧实度为中度敏感指标(40%—100%),是土壤退化发生的主要目标。初始入渗率、稳定入渗率、平均入渗率、砂粒、抗剪强度、毛管孔隙度、黏粒属于低敏感指标(10%—40%),是土壤退化作用中的稳定因素,其中土壤容重、土壤总孔隙度、粉粒变异系数相对比较低,接近不敏感(CV<10%)。K-S检验结果表明,土壤退化各项指标均服从正态分布(P>0.05)。在坡耕地土壤质量评价中,可定量评价土壤质量时选择中度敏感指标[22-23]。由于砂粒(2.66)、毛管孔隙度(2.53)Norm值较低,而黏粒的相关性低于稳定入渗率,因此选取饱和导水率、土壤紧实度、初始入渗率、稳定入渗率、平均入渗率、抗剪强度进行土壤退化指数的计算。

表5 不同侵蚀程度下紫色土坡耕地耕层土壤物理性质排序统计结果

Table 5 Statistical results of sorting of physical properties of tillage layer under different erosion degrees of purple soil slope farmland


width=376.55,height=340.5
图3 不同侵蚀程度下耕层土壤力学特性变化特征

Fig. 3 Change characteristics of soil mechanical properties in tillage layer under different erosion degrees

不同侵蚀程度下土壤退化指数变化特征为(图5):S-5处理为-8.71%,S-10为-10.95%,S-20为-12.17%,S-15为-15.37%,S-5与S-20差异显著(P<0.05)。随着侵蚀程度的增加土壤退化指数呈先减小后增加的趋势。在0—20 cm耕层,S-15土壤退化指数最小(-9.42%),S-5土壤退化指数最大(-6.81%);在20—40 cm心土层,S-5土壤退化指数最大(-10.60%),S-15土壤退化指数最小(-21.33%)。S-15条件下耕层土壤退化指数高于心土层的土壤退化指数,而S-5、S-10、S-20耕层(0—20 cm)土壤退化指数高于心土层(20—40 cm)土壤退化指数。根据土壤退化指数将土壤退化等级等距划分为未退化(0)、轻度退化(-7—0)、中度退化(-14— -7)、重度退化(>-14)。

对于不同侵蚀程度下,土壤退化指数随着土层深度增加呈先增加后减小的趋势。在S-5处理下,土壤退化指数表现为:20—30 cm>10—20 cm>0—10 cm>30—40 cm;在S-10处理下,土壤退化指数表现为:10—20 cm>20—30 cm>0—10 cm>30—40 cm;S-15条件下,土壤退化指数表现为:10—20 cm>0—10 cm土层>20—30 cm>30—40 cm,表明了侵蚀S-5、S-10对0—30 cm土层影响较大。S-15对0—20 cm土层土壤影响较大,在S-20条件下,土壤退化指数表现为:10—20 cm>0—10 cm>30—40 cm>20—30 cm,表明了S-20对0—40 cm土层影响最大,S-5、S-10、S-15、S-20 条件下,0—10 cm土层与10—20 cm土层土壤退化指数差异显著(P<0.05)。

3 讨论
3.1 耕层土壤可蚀性K值变化特征分析
土壤可蚀性K值可表征土壤被侵蚀的难易程度,反映土壤潜在水土流失等级,是土壤侵蚀预测的敏感指标之一[24]。本研究表明土壤侵蚀程度直接或间接影响土壤颗粒组成、土壤孔隙特征分布及大小,导致土壤容重变大,土壤紧实化,并导致土壤渗透性下降,最终导致水土流失的发生。本研究发现可蚀性K值与砂粒呈负相关,与粉粒正相关,而与黏粒含量不相关,与前人研究不同[25],其原因为:土壤侵蚀程度增加,土壤中的细颗粒优先迁移,粗颗粒相对集中,土壤质地发生粗化,土壤侵蚀程度越大,黏粒含量减小,且对可蚀性K值影响较小。随着侵蚀程度增加,土壤可蚀性K值减小,土壤容重增加,土壤紧实化,土壤入渗性降低的原因可能为:一是由于剥蚀掉疏松表层土壤,下层紧实土壤露出;二是坡面径流带走耕层土壤细小颗粒,土壤大颗粒遗留在表层,引起土壤粗化;三是侵蚀程度越大,导致土壤容重增加和土壤孔隙特征变差。土壤退化指数呈现S-15低于S-20,可能原因为:一是紫色土土层浅薄,容易被侵蚀,深层土壤出现高度紧实化;二是由于侵蚀程度的不同,导致S-15比S-20退化严重。由图6可知,土壤可蚀性K值在0.04726— 0.04769 t·hm2·h·MJ-1·mm-1·hm-2之间变化。土壤可蚀性K值的变异性随土壤侵蚀程度加剧呈现出线性递减趋势(R2=0.9934),随着土壤侵蚀程度的增加,土壤可蚀性K值呈减小趋势,与周宁[26]研究结果相同。对于同一侵蚀程度,在30—40 cm、20—30 cm土壤可蚀性K值与0—10 cm、10—20 cm土层土壤可蚀性K值降幅为0.001%—0.064%,土壤可蚀性K值随土层深度增加呈先增加后减小的趋势,该结果与ZHANG等[27]的研究结果一致。

width=404.9,height=191.95
SHC:饱和导水率Saturated hydraulic conductivity;SS:抗剪强度Soil shear strength;SC:土壤紧实度 Soil compactibility;SIR:初始入渗率Initial soil infiltration;SR:稳定入渗率Stable infiltration rate;AR:平均入渗率Average infiltration rate;G:砂粒Sand;P:粉粒Silt;C:黏粒Clay;BD:土壤容重Soil bulk density;pT:土壤总孔隙度Soil total porosity;P:土壤毛管孔隙度Soil capillary porosity

图4 不同侵蚀程度下耕层土壤物理性质排序图

Fig. 4 Soil physical properties of tillage under different erosion degrees

表6 紫色土坡耕地耕层土壤退化指标统计分析特征

Table 6 Statistical analysis of soil degradation indicators of cultivated land in purple soil slope


width=354.15,height=174.2
图5 不同侵蚀程度下耕层土壤退化指数变化特征

Fig. 5 Change characteristics of soil degradation index in tillage layer under different erosion degrees

width=378.7,height=176.1
图6 不同侵蚀程度下耕层土壤可蚀性K值变化特征

Fig. 6 Change characteristics of soil erodibility K value in tillage layer under different erosion degrees

3.2 耕层潜在水土流失特征分析
潜在水土流失等级是预防土壤退化的重要依据[28]。国内外土壤侵蚀与土壤理化特性相互关系研究表明,通过土壤物理性质可以评价土壤潜在水土流失等级强弱[29]。土壤渗透性能的好坏直接关系到地表产流量的大小,对土壤潜在水土流失等级影响很大[30]。许多学者把土壤渗透性作为反映土壤潜在水土流失等级的重要因素进行研究,甚至直接利用土壤渗透性来表征土壤潜在水土流失等级。土壤渗透性能越好,地表径流就会减少,土壤的流失量也会相应减少[31]。土壤紧实是由于孔隙空间的降低使土壤颗粒排列紧密,使适于作物生长的土壤三相比结构改变,进而导致土壤体积质量增加的过程,是耕地质量恶化的综合表征。稳定入渗率、土壤紧实度是表征黄土丘陵区潜在水土流失等级的关键指标[32],但目前土壤渗透性与潜在水土流失等级的关系研究往往都是定性的描述,定量分析较少。因此选用土壤稳定入渗率作为土壤渗透性指标表征土壤潜在水土流失等级。根据图3可知,稳定入渗率>土壤紧实度>饱和导水率>平均入渗率>初始入渗率>抗剪强度,土壤稳定入渗率、土壤紧实度相关性最大,因此选定土壤稳定入渗率、土壤紧实度确定土壤潜在水土流失等级。本文以0—10 cm、10—20 cm土层的土壤稳定入渗率、土壤紧实度进行确定坡耕地耕层土壤潜在水土流失等级(表7),土壤入渗性等级增加,土壤潜在水土流失等级减小,土壤紧实度等级增加,土壤潜在水土流失等级增加。

结合表7、表8可知不同侵蚀程度处理下坡耕地土壤退化指标存在明显差异,由稳定入渗率、土壤紧实度确定土壤潜在水土等级可知,在0—10 cm土层中,S-20土壤水土流失等级为中度,在0—10 cm和10—20 cm土层中,CK土壤潜在水土流失等级为极弱。

表7 基于土壤稳定入渗率与土壤紧实度确定坡耕地耕层土壤潜在水土流失等级

Table 7 Determines the potential soil erosion grade of slope farmland based on soil infiltration rate and soil compaction


F表示土壤入渗性是主导因素,M表示土壤力学性质是主导因素;数字表示潜在土壤流失等级的强弱,1、2、3,4,5分别代表潜在水土流失等级极弱、弱、中度、重度、极重度土壤潜在水土流失等级越大,由此将实测土壤物理指标标准后,变成0—1之间的无量纲数值,把土壤稳定入渗率和土壤紧实度等距分成5级:土壤稳定入渗率数据处理时将分为1-很慢(0—0.2),2-慢(0.2—0.4),3-中等(0.4—0.6),4-快(0.6—0.8),5-特快(0.8—1.0),土壤紧实度数据处理时将分为1-很松(0—0.2),2-松(0.2—0.4),3-中等(0.4—0.6),4-紧实(0.6—0.8),5-过紧(0.8—1.0)。标准后值越大,表示土壤潜在土壤流失等级越大。表8同

F. Indicates that soil infiltration is the dominant factor, M. Indicates that soil mechanical properties are the dominant factor; Figures indicate the strength of potential soil loss levels, and 1, 2, 3, 4, and 5 represent weak and weak potential soil erosion levels, respectively. The higher the potential soil erosion level of moderate, severe and extremely heavy soil, the soil physical index standard will be measured and become a dimensionless value between 0-1, and the soil infiltration rate and soil compaction are equidistant. Divided into 5 grades: soil stable infiltration rate data processing will be divided into 1-very slow (0-0.2), 2-slow (0.2-0.4), 3-medium (0.4-0.6), 4-fast (0.6-0.8) ), 5-Express (0.8-1.0), soil compaction data processing will be divided into 1-very loose (0-0.2), 2-松 (0.2-0.4), 3-medium (0.4-0.6), 4 - Tight (0.6-0.8), 5--tight (0.8-1.0). The larger the value after the standard, the greater the potential soil loss level of the soil. The same as Table 8

4 结论
4.1 紫色土坡耕地不同侵蚀程度的土壤入渗性能差异显著,随着侵蚀程度加剧土壤渗透性降低,即CK>S-5>S-10>S-15>S-20。与CK处理相比,S-20的土壤渗透性能降幅在27.42%—47.11%之间,S-20土壤渗透性能最差。不同侵蚀程度下0—20 cm土层土壤入渗性能高于20—40 cm土层,且土壤初始入渗率>稳定入渗率>平均入渗率>饱和导水率。

4.2 紫色土坡耕地不同侵蚀程度的土壤力学性能差异显著,随着侵蚀程度加剧土壤紧实度、土壤抗剪强度呈增加趋势,即CK<S-5<S-10<S-15<S-20,S-20土壤抗剪强度、土壤紧实度最大。土壤力学特性增加是导致紫色土坡耕地耕层土壤物理退化的主要原因。不同侵蚀程度下坡耕地20—40 cm土层的土壤力学性能高于0—20 cm土层。

表8 不同侵蚀程度下坡耕地耕层潜在水土流失等级

Table 8 Potential soil erosion grades of sloping farmland under different erosion degrees


4.3 紫色土坡耕地土壤物理性质及力学特性与第一排序轴相关性排序为稳定入渗率>土壤紧实度>饱和导水率>平均入渗率>初始入渗率>抗剪强度。土壤力学指标与土壤入渗性指标显著负相关(P<0.05)。土壤物理性质与土壤入渗性能、土壤力学性能显著相关。土壤抗剪强度是影响不同侵蚀程度下土壤物理性质及力学性质变化的主要因素。

4.4 紫色土坡耕地耕层土壤退化指数:S-5为-8.71%,S-10为-10.95%,S-15为-15.37%,S-20为-12.17%。土壤退化指数随侵蚀程度增加呈先减小后增加,并在S-15土壤退化指数最小,土壤退化程度为重度退化。不同侵蚀程度下,0—10、20—30、30—40 cm土层退化严重。

References

[1] 中国科学院成都分院土壤研究室. 中国紫色土(Ⅰ). 北京: 科学出版社, 1991.

Department of Soil Research, Chengdu Branch, Chinese Academy of Sciences. Purple Soil of China(I) . Beijing: Science Press, 1991. (in Chinese)

[2] WANG S S, SUN B X, LI C D, LI Z B, MA B. Runoff and soil erosion on slope cropland: A review. Journal of Resources and Ecology, 2018, 9(5): 461-470.

[3] 韩晓增, 邹文秀, 陆欣春, 段景海. 旱作土壤耕层及其肥力培育途径. 土壤与作物, 2015, 4(4): 145-150.

HAN X Z, ZOU X W, LU X C, DUANG J H. The soil cultivated layer in dryland and technical patterns in cultivating soil fertility. Soil and Crop, 2015, 4(4): 145-150. (in Chinese)

[4] 苏正安, 张建辉, 聂小军. 紫色土坡耕地土壤物理性质空间变异对土壤侵蚀的响应. 农业工程学报, 2009, 25(5): 54-60.

SU Z A, ZHANG J H, NIE X J. Response of spatial variability of soil physical properties to soil erosion in purple soil slope farmland. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(5): 54-60. (in Chinese)

[5] 黄少燕, 查轩. 坡耕地侵蚀过程与土壤理化特性演变. 山地学报, 2002, 20(3): 290-295.

HUANG S Y, CHA X. Study on soil erosion process and evolution of soil physicochemisty characteristics on sloping farmland. Journal of Mountain Research, 2002, 20(3): 290-295. (in Chinese)

[6] 葛方龙, 张建辉, 苏正安, 聂小军. 坡耕地紫色土养分空间变异对土壤侵蚀的响应. 生态学报, 2007(2): 459-464.

GE F L, ZHANG J H, SU Z A , NIE X J. Response of changes in soil nutrients to soil erosion on a purple soil of cultivated sloping land. Acta Ecologica Sinica, 2007(2): 459-464. (in Chinese)

[7] 史德明, 韦启潘. 中国南方侵蚀土壤退化指标体系研究. 水土保持学报, 2000, 14(3): 1-9.

SHI D M, WEI Q P. Research on index system of eroded soil degradation in southern China. Journal of Soil and Water Conservation, 2000, 14(3): 1-9. (in Chinese)

[8] 史东梅, 蒋光毅, 蒋平, 娄义宝,丁文斌, 金慧芳. 土壤侵蚀因素对紫色丘陵区坡耕地耕层质量影响. 农业工程学报, 2017, 33(13): 270-279.

SHI D M, JIANG G Y, JIANG P, LOU Y B, DING W B, JIN H F. Effects of soil erosion factors cultivated-layer quality of slope farmland in purple hilly area. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(13): 270-279. (in Chinese)

[9] LARNEY F J, JANZEN H H, OLSON B M, WAYNE L C. Soil quality and productivity responses to simulated erosion and restorative amendments. Canadian Journal of Soil Science, 2000, 80(3):515-522.

[10] OYEDELE D J, AINA P O. Response of soil properties and maize yield to simulated erosion by artificial topsoil removal. Plant &Soil, 2006, 284(1/2):375-384.

[11] 刘慧, 魏永霞. 黑土区土壤侵蚀厚度对土地生产力的影响及其评价. 农业工程学报, 2014, 30(20): 288-296.

LIU H, WEI Y X. Influence of soil erosion thickness on soil productivity of black soil and its evaluation. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(20): 288-296. (in Chinese)

[12] 张瑞, 苟晓敏, 赵玉珍, 王志强. 东北黑土区土壤侵蚀对土壤持水性的影响. 水土保持学报, 2015, 29(1): 62-65.

ZHANG R, GOU X M, ZHAO Y Z, WANG Z Q. Effects of soil erosion on soil water retention in black soil region of Northeast China. Journal of Soil and Water Conservation, 2015, 29(1): 62-65. (in Chinese)

[13] 陈奇伯, 王克勤, 李金洪, 朱国进, 李跃. 元谋干热河谷坡耕地土壤侵蚀造成的土地退化. 山地学报, 2004, 22(5): 528-532.

CHEN Q B, WANG K Q, LI J H, ZHU G J, LI Y. Land degradation caused by soil erosion in slope farmland in dry-hot of Yuanmou county. Journal of Mountain Science, 2004, 22(5): 528-532. (in Chinese)

[14] 成婧, 吴发启, 王健, 云峰, 吴光艳, 于晓玲. 渭北旱塬不同程度土壤侵蚀及生产力恢复试验. 中国水土保持科学, 2013, 11(2): 19-24.

CHENG J, WU F Q, WANG J, YUN F, WU G Y, YU X L. Effects of soil erosion of different degrees on soil productivity and recovery in Weibei Dryland. Science of Soil and Water Conservation, 2013, 11(2): 19-24. (in Chinese)

[15] LIU J X, TU S H, GUO Y Z, JIA Q H. Effect of soil erosion on productivity of sloping field in Mico-plot experiment. Agricultural Science & Technology, 2013, 14(1): 127-130.

[16] ZHENG S U, ZHANG J H, NIE X J. Effect of soil erosion on soil properties and crop yields on slopes in the Sichuan Basin, China. Pedosphere, 2010, 20(6): 740-746.

[17] 王志强, 刘宝元, 王旭艳, 高晓飞, 刘刚. 东北黑土区土壤侵蚀对土地生产力影响试验研究. 中国科学: 地球科学, 2009(10): 1397-1412.

WANG Z Q, LIU B Y, WANG X Y, GAO X F, LIU G. Experimental study on the effect of soil erosion on land productivity in black soil region of Northeast China. Science in China: Earth Science, 2009(10): 1397-1412. (in Chinese)

[18] 中国科学院南京土壤研究所土壤物理研究室. 土壤物理性质测定方法. 北京: 科学出版社, 1978: 140-148.

Department of Soil Physics, Institute of Soil Science, Chinese Academy of Sciences. Method for Determination of Soil Physical Properties. Beijing: Science Press, 1978: 140-148. (in Chinese)

[19] ADEJUWON J O, EKANADE O. A comparison of soil properties under different land use types in a part of the Nigerian cocoa belt. Catena, 1988, 15(3): 319-331.

[20] SHIRAZI M A, HART J W, BOERSMA L. A unifying quantitative analysis of soil texture: improvement of precision and extension of scale. Soil Science Society of America Journal, 1988, 52(1): 181.

[21] 金慧芳, 史东梅, 陈正发, 刘益军, 娄义宝, 杨旭. 基于聚类及PCA分析的红壤坡耕地耕层土壤质量评价指标. 农业工程学报, 2018, 34(7): 155-164.

JIN H F, SHI D M, CHEN Z F, LIU Y J, LOU Y B, YANG X. Evaluation indicators of cultivated layer soil quality for red soil slope farmland based on cluster and PCA analysis. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(7): 155-164. (in Chinese)

[22] 许明祥, 刘国彬, 赵允格. 黄土丘陵区土壤质量评价指标研究. 应用生态学报, 2005, 16(10): 1843-1848.

XU M X, LIU G B, ZHAO Y G. Assessment indicators of soil quality in hilly Loess Plateau. Chinese Journal of Applied Ecology, 2005, 16(10): 1843-1848. (in Chinese)

[23] XU M, LI Q, WILSON G. Degradation of soil physicochemical quality by ephemeral gully erosion on sloping cropland of the hilly Loess Plateau, China. Soil & Tillage Research, 2016, 155: 9-18.

[24] MA W M, ZHANG X C. Effect of Pisha sandstone on water infiltration of different soils on the Chinese Loess Plateau. Journal of Arid Land, 2016, 8(3): 331-340.

[25] 林芳, 朱兆龙, 曾全超, 安韶山. 延河流域三种土壤可蚀性K值估算方法比较. 土壤学报, 2017, 54(5): 1136-1146.

LIN F, ZHU Z L, ZENG Q C, AN S S. Comparative study of three different methods for estimation of soil erodibility K in Yanhe Watershed of China. Acta Pedologica Sinica, 2017, 54(5): 1136-1146. (in Chinese)

[26] 周宁, 李超, 琚存勇, 马亚怀. 黑龙江省土壤可蚀性K值特征分析. 农业工程学报, 2015, 31(10): 182-189.

ZHOU N, LI C, QU C Y, MA Y H. Analysis of K-value characteristics of soil erodibility in Heilongjiang Province. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(10): 182-189. (in Chinese)

[27] ZHANG K, LI L, ZHANG Z. Reliability of soil erodibility estimation in areas outside the US: a comparison of erodibility for main agricultural soils in the US and China. Environmental Earth Sciences, 2016, 75(3): 252.

[28] 张慧利, 蔡洁, 夏显力. 水土流失治理效益与生态农业发展的耦合协调性分析. 农业工程学报, 2018, 34(8):162-169.

ZHANG H L, CAI J, XIA X L. Coupling coordinative degree analysis on benefit of water and soil erosion control and development of ecological agriculture. Transactions of the Chinese Society of Agricultural Engineering,2018, 34(8): 162-169. (in Chinese)

[29] 潘剑君, Ir. E. Bergsma. 利用土壤入渗速率和土壤抗剪力确定土壤侵蚀等级. 水土保持学报, 1995(2): 93-96.

PAN J. Bergsma E. Determination of soil erosion grade using soil infiltration rate and soil shear resistance. Journal of Soil and Water Conservation, 1995(2): 93-96. (in Chinese)

[30] 李卓, 吴普特, 冯浩, 赵西宁, 黄俊, 庄文化. 容重对土壤水分入渗能力影响模拟试验. 农业工程学报, 2009, 25(6): 40-45.

LI Z, WU P T, FENG H, ZHAO X N, HUANG J, ZHUANG W H. Simulated experiment on effect of soil bulk density on soil infiltration capacity. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(6): 40-45. (in Chinese)

[31] 李卓, 吴普特, 冯浩, 赵西宁, 黄俊, 庄文化. 容重对土壤水分蓄持能力影响模拟试验研究. 土壤学报, 2010, 47(4):611-620.

LI Z, WU P T, FENG H, ZHAO X N, HUANG J, ZHUANG W H. Simulated experiment on effects of soil bulk density on soil water holding capacity. Acta Pedologica Sinica, 2010, 47(4): 611-620. (in Chinese)

[32] WANG G Q, WU B, ZHANG L, JIANG H, XU Z X. Role of soil erodibility in affecting available nitrogen and phosphorus losses under simulated rainfall. Journal of Hydrology, 2014, 514: 180-191.

Effects of Soil Erosion on Physical and Mechanical Properties of Cultivated Layer of Purple Soil Slope Farmland
JIANG Na1, SHI DongMei1, JIANG GuangYi2, SONG Ge1, SI ChengJing3, YE Qing1

(1College of Resources and Environment, Southwest University, Chongqing 400715; 2 Chongqing Eco-environment Monitoring Station of Soil and Water Conservation, Chongqing 401147; 3Chongqing Wanzhou District Water Resources Bureau, Chongqing 404000)

Abstract: 【Objective】Purple soil slope farmland is an important cultivated land resource for agricultural production in southern hilly area. In order to study the effects of soil erosion on the physical properties and mechanical properties degradation of purple soil slope arable land, based on the classification of soil degradation, the change characteristics of physical and mechanical properties and soil degradation index under different erosion degrees were quantitatively analyzed.【Method】With non-eroded plots as control group, the soil permeability, soil mechanical properties and soil degradation index of cultivated-layer were compared and analyzed under 5 cm (S-5), 10 cm (S-10), 15 cm (S-15) and 20 cm (S-20) erosion conditions by shovel soil erosion simulation test method, and the degradation degree of physical and mechanical properties of sloping farmland was quantitatively analyzed. 【Result】 Soil permeability of cultivated-layer under different erosion degrees was CK>S-5>S-10>S-15>S-20. The initial infiltration rate, stable infiltration rate, average infiltration rate and saturated water conductivity of soil decreased with the increase of erosion degree. Soil permeability index of each layer under different erosion degrees was 0-20 cm soil layer>20-40 cm soil layer. Soil mechanical properties of different erosion degrees were CK<S-5<S-10<S-15<S-20. Soil shear strength and soil compacted degree increased with erosion degree. Soil mechanical indexes of all layers under different erosion degrees were 0-20 cm soil layer<20-40 cm soil layer. The contribution rate of soil shear strength to the first axis was the largest, and soil shear strength was the main factor affecting the change of soil physical properties and mechanical properties under different erosion degrees. Soil physical properties and mechanical properties were ranked as stable infiltration rate>soil compaction>saturated water conductivity>average infiltration rate>initial infiltration rate>shear strength. Soil degradation index of under different erosion degrees was S-5 (-8.71%)>S-10 (-10.95%)>S-20 (-12.17%)>S-15 (-15.37%). S-15 had the greatest influence on the topsoil physical properties, and the S-15 soil degradation index was the smallest, with the degree of soil degradation being severe.【Conclusion】Soil compaction was serious in slope farmland of purple soil. According to soil infiltration and mechanical properties, the soil degradation grade with different erosion degree could be classified into four grades: undegraded, mild degradation, moderate degradation and severe degradation. The results could provide the technical parameters for the identification and restoration control of the quality degradation process of sloping farmland.

Key words: purple soil; soil erosion; slope farmland; top layer; soil degradation; physical characteristics of soil

开放科学(资源服务)标识码(OSID):width=42.5,height=42.5

doi: 10.3864/j.issn.0578-1752.2020.09.012

收稿日期:2019-07-01;

接受日期:2019-10-21

基金项目:国家自然科学基金(41771310)

联系方式:江娜,E-mail:m18725617837@163.com。通信作者史东梅,E-mail:shidm_1970@126.com

(责任编辑 李云霞)

奥鹏易百网www.openhelp100.com专业提供网络教育各高校作业资源。
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|Archiver|手机版|小黑屋|www.openhelp100.com ( 冀ICP备19026749号-1 )

GMT+8, 2024-5-6 20:30

Powered by Discuz! X3.5

Copyright © 2001-2024 Tencent Cloud.

快速回复 返回顶部 返回列表